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Abstract

Background: The Actinobacteria phylum represents one of the largest and most diverse groups
of bacteria, encompassing many important and well-characterized organisms including Streptomyces,
Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse
in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of
|9 actinobacterial species determined that only 5 genes of unknown function uniquely define this
large phylum [I]. The cellular functions of these actinobacteria-specific proteins (ASP) are not
known.

Results: Here we report the first characterization of one of the 5 actinobacteria-specific proteins,
ASPI (Gene ID: SCO1997) from Streptomyces coelicolor. The X-ray crystal structure of ASP| was
determined at 2.2 . The overall structure of ASP| retains a similar fold to the large NP-I family of
nucleoside phosphorylase enzymes; however, the function is not related. Further comparative
analysis revealed two regions expected to be important for protein function: a central, divalent
metal ion binding pore, and a highly conserved elbow shaped helical region at the C-terminus.
Sequence analyses revealed that ASP| is paralogous to another actinobacteria-specific protein
ASP2 (SCO1662 from S. coelicolor) and that both proteins likely carry out similar function.

Conclusion: Our structural data in combination with sequence analysis supports the idea that two
of the 5 actinobacteria-specific proteins, ASP| and ASP2, mediate similar function. This function is
predicted to be novel since the structures of these proteins do not match any known protein with
or without known function. Our results suggest that this function could involve divalent metal ion
binding/transport.

Background morphology, physiology and ecology [2-5]. These bacteria
Actinobacteria constitute one of the main phyla within  are characterized by high G+C content (greater than 55
the Bacteria and they are highly diverse in terms of their =~ mol%) [3,4] and a monoderm cell structure (i.e. bounded
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by a single membrane)[6,7]. They include Streptomyces,
the major antibiotic producers in the pharmaceutical
industry as well as many important human, animal and
plant pathogens, such as Mycobacterium, Tropheryma,
Nocardia, Propionibacterium, Leifsonia, etc. However, except
for their clustering in the 16S rRNA tree, no molecular,
biochemical or physiological characteristics are known
that can clearly distinguish species belonging to the phy-
lum Actinobacteria from other bacteria [8,9].

Comparative analyses of genomic sequences are enabling
identification of novel genetic characteristics that are
unique to different groups of bacteria. Large numbers of
proteins and conserved indels (inserts and deletions) that
are specific for various prokaryotic groups such as
Archaea, Chlamydiae, Bacteriodetes-Chlorobi, Proteobac-
teria, etc. have been identified [10-14]. Our recent com-
parative genomic studies on available actinobacterial
genomes have identified a large number of proteins that
are either specific for all actinobacterial species or certain
subgroups within this phylum [1]. Blast searches with
these proteins show no significant hits or similarity to any
other protein in the databases. These proteins thus pro-
vide novel and useful molecular markers for this diverse
group of bacteria [1]. Among these actinobacteria-specific
proteins, five proteins (corresponding to ML1009,
ML1306, ML1029, ML0257 and ML0642 from the
genome of Mycobacterium leprae TN) were found in every
sequenced actinobacterial species [1] including those
from the deepest branch Rubrobacter xylanophilus and also
from intracellular pathogens such as Tropheryma whipplei
which have highly reduced genomes [9,15]. All five of
these proteins are conserved within actinobacteria but
have no known function. These five actinobacteria-spe-
cific proteins are referred to in this work as ASP-1, 2, 3, 4
and 5. The simplest and most logical explanation for the
persistence of these proteins in only actinobacteria is that
their genes evolved only once in a common ancestor of all
actinobacteria and were subsequently passed on to all
their decedents. So these genes/proteins provide among
the very few molecular characteristics known that are dis-
tinctive of the Actinobacteria phylum [1,8,16,17]. In view
of their actinobacteria-specificity, it is of great interest to
determine the cellular functions of these proteins and the
cellular processes in which they participate. These studies
are expected to provide novel insights into biochemical
processes and physiological characteristics that are unique
to actinobacteria.

In an attempt to gain insight into the cellular functions of
these proteins, we have initiated structural work on these
5 actinobacteria-specific proteins. We report here the crys-
tal structure of SCO1997 from S. coelicolor, which corre-
sponds to the protein ML1009 from M. leprae (ASP1) [1].
Structural and phylogenetic analysis indicates that
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although ASP1 retains a similar overall fold compared to
members of the hydrolase superfamily such as purine
nucleoside phosphorylase, the active site region and
therefore function of ASP1 are distinct [18,19]. Compari-
son of the most highly conserved sequences of ASP1 from
different actinobacteria with their positions in the crystal
structure reveals a potential role for ASP1 in binding and
transport of divalent metal ion. Interestingly, additional
sequence and structural analyses show that another actin-
obacteria-specific protein ASP2 (SCO1662; ML1306) is
evolutionarily and functionally related to ASP1 [1].

Results and discussion

Crystal Structure of ASPI from S. coelicolor

The protein ASP-1 is of hypothetical or unknown func-
tion. The genes involved in related functions (e.g. those
that are part of an operon) are generally clustered in vari-
ous species or closely related species. Thus, genetic linkage
studies can often provide valuable clues regarding possi-
ble cellular function of a given gene/protein [20-22].
Hence, we have examined the neighboring genes of ASP1
in various sequenced actinobacteria. The genes flanking
ASP1 in different actinobacterial genomes are either of
unknown function or perform unrelated functions. The
information for these flanking genes is presented in the
Additional file 1 and it provides no clue regarding the pos-
sible cellular function of this protein.

To gain insight into the cellular function of ASP1, we have
cloned, expressed and crystallized the gene for this protein
from S. coelicolor A3(2) [1]. The Gene ID and accession
numbers of this protein from other actinobacterial
genomes are provided in the Additional file 2. The crystal
structure of full length ASP1 was determined using
Seleno-methionine (SeMet) derivatized ASP1 and single
anomalous diffraction (SAD) techniques. The final model
was refined with native data (2.2 ) to R and Rg,, values of
17.4% and 23.4%, respectively. The structure of ASP1
contained three regions that were unable to be traced into
electron density and therefore not included in the final
model. These disordered regions included the first 2 resi-
dues at the N-terminus, the last 36 C-terminal residues
(amino acids 277-312) as well as a short loop region
encompassing residues 168-172. A complete list of data
collection and model refinement statistics can be found in
Table 1.

Crystals grew in space group 123 and contained a single
copy of ASP1 in the asymmetric unit. Upon inspection of
crystallographic packing interactions it appeared that
ASP1 might exist as a trimer. The amount of surface area
buried through the formation of an ASP1 trimer is signif-
icant at 7560 2. As well, when analyzed by size exclusion
chromatography (Figure 1), ASP1 eluted with a Stokes
radius consistent with a molecular mass equivalent to
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Table I: Crystallographic data and model refinement statistics.

Native? Se-SAD2

Data collection
Space group 123 123
Cell dimensions

a, b, c (A) 135.1, 135.1, 135.1 135.4, 135.4, 135.4

o, B,y (°) 90, 90, 90 90, 90, 90
Wavelength 1.1000 0.9794
Resolution (/3\)b 50.0-2.2 (2.24-2.2) 50.0-2.5 (2.59-2.5)
Rinerge (%)b 6.7 (42.4) 9.7 (43.7)
Ile ()b 39.1 (8.6) 18.7 (6.3)
Completeness (%)P 99.3 (100.0) 98.6 (100.0)
Redundancyb 21.6 (22.0) 22.7 (23.0)
Refinement
Resolution (A) 50.0-2.2
No. reflections 19,088
Ryori/Réree 17.4%/23.4%
No. atoms

Protein 2085

Ligand/ion 2

Water 272
B-factors 343
R.m.s deviations

Bond lengths (A) 0.03

Bond angles (°) 24

2 One crystal was used for data collection.
bValues in parentheses are for highest-resolution shell.

~125 kDa (monomer 36 kDa), further supporting the idea
that ASP1 exists as a trimer in solution.

ASP1 contains a single domain comprised of a central
mixed B-sheet (B1-3-6-7-2-8-10-9) flanked by 4 a-helices
on one side and 3 on the other yielding an overall three
layered afa fold (Figure 2). Helices F and G form an
elbow-shaped extension that is peripheral to the core
domain. Based on secondary structure prediction of the
missing 36 C-terminal residues, an additional or perhaps
extended helix is expected to follow aG. Trimer formation
is largely stabilized by interactions between an extended
anti-parallel hairpin (f4-5) and the aD region from an
adjacent monomer (Figure 2). A portion of the extended
loop (residues 175-179) preceding aD further stabilizes
the trimer through interactions with 4-5, resulting in
formation of a 3-stranded anti-parallel sheet (Figure 3).

Assembly of the ASP1 trimer results in the formation of a
roughly globular complex (~diameter 70 ) with three
notable features (Figure 3). First, one side of the trimer
adopts a very flat surface, forming what could perhaps
function as a large docking interface. The electrostatic
potential on this surface is quite neutral having only a
small amount of basic potential. A second unusual feature
of the ASP1 trimer is the presence of a large internal cavity
(~7500 3) surrounded by a three-pronged claw-like struc-
ture. Given the size of this cavity and overall claw-like
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Size exclusion chromatography of ASPI. (A) Size
exclusion chromatographic analysis of full length ASPI at 5
mg/mL. A single peak was eluted at 13.8 mL, consistent with
the expected elution volume of a roughly globular ~125 kDa
protein. (B) Standard Curve for Calibration of S200 size
exclusion column.

structure that surrounds it, it is quite possible that this
region acts as a binding surface for another protein(s) and
or substrate. The electrostatic surface potential of each
claw is negative creating an overall acidic surface on the
internal cavity region of ASP1.

The final and most notable feature of the ASP1 trimer is
the presence of two well ordered magnesium ions (see Fig-
ure 4C for bonding distance and geometry) located at a
central pore formed along the central three fold symmetry
axis. This pore is ~20 deep and is lined by six concentric
rings of amino acids with alternating charge and polarity
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Figure 2

Stereo image of ASP| monomer structure. 3 strands
and a helices are in red and blue, respectively. A single disor-
dered loop between 39-aD is shown as a dotted line.

(Figure 3 and 4A). The shape of the pore is conical and is
tapered to its narrowest point of 4.14 at D71 located
within the second layer. The first Mg2* ion is positioned
just above a negative ring of amino acids formed by three
copies of D71 and D116 (Figure 4). Water molecules in
the first hydration shell of this metal ion are directly
hydrogen bonded to D71 (Figure 4C). A second metal ion
is located in a hydrophobic pocket lined by V117 at the
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third layer. Water molecules within the first hydration
shell of this metal ion are in direct van der Waals contact
with V117. Through its second hydration shell the second
Mg?+ is further stabilized by hydrogen bonding to D71
and also to the main chain carbonyl of R68. Because there
was high concentration of Mg2* in the mother liquor
(~0.55 M), the specificity and possible role of this metal
ion-bound, channel-like pore is unclear, but may be
involved in the biological function of the ASP1 trimer.

Although it is tempting to speculate that the presence of
two Mg2+ions in the central pore region of ASP1 suggests
a role for ASP1 in metal transport, there is no direct evi-
dence to support this idea. Furthermore, a structural com-
parison of ASP1 with CorA, a well characterized Mg2+
transporter whose homologs are present in S. coelicolor
and various actinobacteria [23,24], shows no obvious
similarity between these proteins (results not shown).
Therefore, if ASP1 function does involve some aspect of
Mg?+ binding and/or transporter it does not appear to be
similar to that conducted by CorA.

Structural Comparisons of ASP|

To further characterize the structure of ASP1 and gain
insight into its possible function, we performed a compar-
ative structural analysis using the program DaliLite ver-
sion 3 [25]. This analysis revealed significant structural
similarity to a homologue from Corynebacterium glutami-

Figure 3

Stereo image of ASPI trimer. (A) and (C) Orthoganol views of ASP| trimer shown in ribbon. Individual subunits are
colored, yellow, blue and orange. (B) and (D) Surface representations corresponding to views of ASP1 in (A) and (C), respec-
tively. Positive and negative electrostatic potential are indicated in blue and red surface, respectively.
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Figure 4

Stereo image of central metal-binding pore. (A) Amino acids lining the metal-binding pore are shown in stick represen-
tation. Concentric layers of amino acids are numbered and corresponding polarity indicated by color. Red, blue and yellow
indicate negative, positive and neutral charge, respectively. (B) Interaction between upper 3 layers of central pore and hydrated
Mg2+ ions. Mg2+ ions and surrounding water molecules are colored in green and red, respectively. (C) Magnesium coordina-
tion binding analysis. An Fo-Fc Mg2+ omit map contoured at 5 G is shown in green mesh. For reference, a 2Fo-Fc map con-
toured at |.5 o (blue mesh) is also shown for Mg2+ ions (black sphere) and water molecules (red sphere) in the central pore
region. Since the trimmeric structure presented here is generated using three-fold crystallographic symmetry only unique fea-
tures are indicated. Water molecules bond to Mg2+ ions are labeled in red W1 to WA4. Distances in are indicated in parenthe-
sis with black and purple corresponding to water-metal and water-side chain distances, respectively. Interactions with both
metals are indicated as black dashed bonds, while those involving D71 are shown in light purple.
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cum (GenelD: Ncgl1848) [PDB: 2P90], as well as several
bacterial purine nucleoside phosphorylases and a number
of other glycosidic hydrolases from the larger NP-1 family.

Comparison of ASPI from S. coelicolor and C. glutamicum

As expected, structural comparison of ASP1 from S. coeli-
color and C. glutamicum showed a high degree of conserva-
tion (root mean square deviation (RMSD): 1.6 ).
Importantly, the structure of ASP1 from C. glutamicum
crystallized as a trimer that is identical to the trimer
reported here for ASP1 from S. coelicolor. This finding,
along with our gel filtration data, provides additional sup-
port for the trimeric structure of ASP1 generated through
crystallographic symmetry. Another important observa-
tion from the comparison of the structure from C. glutami-
cum is the structural conservation of the metal binding
pore despite the absence of bound metal ion. The fact that
the pore region adopts an identical structure even when a
metal ion is not present provides strong evidence to sug-
gest that the binding of metal is not simply required for
structure integrity of the ASP1 trimer.

A comprehensive sequence alignment of ASP1 homo-
logues from a broad range of actinobacterial species (Fig-
ure 5 and Additional file 3) clearly demonstrates that
residues contributing to the formation of two distinct
regions (the central pore and C-terminal elbow) within
the structure of ASP1 represent the most highly conserved
sequence of the protein (Figure 6). Figure 6 illustrates the
importance of conserved residues (absolutely conserved
in purple, highly conserved in yellow) in forming the pore
and elbow regions. While most of these residues are
involved in structural stabilization others, such as D71
and L268, are not. As suggested elsewhere, absolutely con-
served amino acids that do not directly contribute to struc-
ture stability and are solvent exposed, are expected to
define key regions for protein function [26-29]. At this
point it is difficult to infer what function the elbow region
might serve. Given its distal location, however, it seems
likely to mediate interaction with other proteins or per-
haps the missing C-terminal region of ASP1. The C-termi-
nal region of ASP1 contains a number of highly conserved
residues (1296, E302, F304, L305). Interestingly, this
region is not observed in either of the currently available
structures suggesting that it may only become ordered
upon binding another molecule.

Comparison of ASP| and PNP

As mentioned above, comparative structural analysis
revealed significant similarity (Z score ~10) between ASP1
and members of the NP-1 family of nucleoside phospho-
rylase enzymes. This family of enzymes participates in the
salvage pathway of purines and pyrimidines biosynthesis
and catalyzes the reversible phosphorolysis of purine and
pyrimidine nucleosides [18,19]. The NP-1 family member
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that shares greatest structural similarity to ASP1 is purine
nucleoside phosphorylase (PNP) from E. coli [PDB:
1ECP]. Despite having very low sequence similarity (8%
identity), ASP1 and PNP; _; structures could be aligned
with an overall RMSD of ~3.0 . With the exception of a few
insertions and deletions, these proteins share identical
overall topology (Figure 7). Two notable insertions
include: the C-terminal highly conserved elbow (aF-G)
and the extended arm region (4-5) essential for ASP1
trimer stability. In addition, there is an insertion of
sequence that significantly increases the loop size between
0B-B3, occluding much of the normal PNP substrate-
binding surface (Figure 7C). While these insertions are
expected to contribute to ASP1 function and certainly
quaternary structure, members of the NP-1 family are
characterized by different oligomeric arrangements rang-
ing from dimer, to trimer and in some instances hexam-
eric structures. Therefore, these observed differences do
not necessarily preclude shared function between PNP
and ASP1.

In contrast, the following evidence strongly suggests that
ASP1 does not function as a nucleoside phosphorylase.
First, a large region of PNP responsible for forming an
entire side of its active site cleft (residues ~100-180
encompassing f7-8-9 and aC-D-E; Figure 7B) is com-
pletely missing in the ASP1 structure, rendering ASP1
incompatible of binding nucleoside. Second, a sequence
alignment (Additional file 3) of ASP1 homologues fails to
identify any of the highly conserved residues involved in
substrate binding or catalysis within the NP-1 family. Fur-
thermore, from sequence and structural alignments it is
equally clear that those regions of ASP1 which are most
highly conserved, are not present within NP-1 family
members. Finally, a PNP homologue in the S. coelicolor
genome has already been identified (SCO4917) and
shows no significant similarity to ASP1. Taken together,
the observations from both sequence and structural com-
parison indicate that while ASP1 and PNP share similar
overall structure and topology, their functions are differ-
ent.

Phylogenetic Analysis of ASPI and ASP2

Of the five actinobacteria-specific genes previously identi-
fied through comparative genomic analysis of 19 actino-
bacterial species, two genes ASP1 (SCO1997; ML1009)
and ASP2 (SCO1662; ML1306) appear to encode structur-
ally related proteins [1]. These proteins have comparable
length and share significant sequence similarity (25%
identity and 43% similarity). The question remains, are
these two conserved actinobacteria-specific proteins func-
tionally related?

We have conducted a search for ASP1 and ASP2 homo-
logues in all available sequenced actinobacterial genomes
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Multiple sequence alignments of ASP| homologues from 8 representative actinobacterial species. Conserved

residues are colored based on the complete alignment of all 43 available actinobacterial homologues (see Additional file 3): pur-
ple, absolutely conserved residues; yellow, highly conserved residues. 3 strands and o helices are labeled in red and blue, cor-
responding to the ribbon diagram in Figure 2.
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Figure 6
Highly conserved regions within the ASP1 trimer. (A) Conserved residues important for forming the central pore and

elbow regions. A circle delineates each region. Absolutely conserved residues are colored in purple and highly conserved ones
are colored in yellow. (B) and (C) Stereo views of the central pore region and C-terminal elbow regions, respectively. Con-
served residues are indicated as in (A). Magnesium ions are shown as black spheres with their first hydration shell of water

molecules shown as red spheres.
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Figure 7
Structural and Topological Comparison of (A) ASPI1 and (B) PNP; ., [PDB: 1ECP]. (C) Structural Comparison of

ASP| monomer (dark blue) with PNP; _; (light blue) [PDB: 1ECP]. Regions defining ASP| structure are labeled blue, while
those referring to PNP; . are labeled red.
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Phylogenetic tree of ASPI| and ASP2 homologous genes in different actinobacterial species. The gene ID in blue
are from these genomes which only contain one of the two paralogous genes. The representing genomes of each gene ID are
listed in Additional file 2. The bootstrap scores >50% are indicated on various branch points.

(61 strains). Interestingly, while most actinobacterial spe-
cies contain homologues of both ASP1 and ASP2, some
species contain only one homologue. The single homo-
logue by definition shares similarity to both ASP1 and
ASP2 (see Additional file 2). Species (18 in total), which
only contain one homologue, are found in 7 divergent
genera (Corynebacterium, Actinomyces, Saccharopolyspora,
Brevibacterium, Bifidobacterium, Tropheryma and Rubro-
bacter). Further phylogenetic analysis of ASP1 and ASP2
homologues from different actinobacterial species was
conducted to determine how these two genes are related.
In the phylogenetic tree shown in Figure 8, two distinct
clusters are observed with a strong bootstrap score (98%)
indicating that the observed branch pattern is highly reli-
able. One cluster collected all genes homologous to ASP2
while the other cluster, grouped only those genes homol-
ogous to ASP1. The genes from the 18 species containing

only one homologue do not form a third branch, but
rather fall into either the ASP1 and ASP2 clusters. The two
distinct clusters observed in the phylogenetic tree suggest
that ASP1 and ASP2 are paralogues that evolved from a
gene duplication event in a common ancestor of actino-
bacteria. Therefore, most members from this phylum con-
tain both ASP1 and ASP2 except those species, which have
lost one copy later in the evolutionary process. The fact
that ASP1 and ASP2 are paralogues, yet either can be lost,
suggests that these two paralogues perform similar func-
tions. Based on their sequence and functional similarity,
these two proteins are also expected to share significant
structural similarity. Preliminary X-ray crystallographic
analysis indicates that the tertiary and quaternary struc-
ture of ASP2 is in fact similar to ASP1 (data not shown).
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Sequence alignment of ASP1 and ASP2 homologues dem-
onstrate that important residues which are highly con-
served in ASP1 homologues and likely involved in protein
function are also conserved in ASP2 homologues (Addi-
tional file 4). As highlighted in Additional file 4, 8 of the
15 absolutely conserved residues from ASP1 homologues
are also absolutely conserved amongst ASP2 homologues.
The remaining 7 are still highly conserved and are only
substituted with similar amino acids (Additional file 4).
This finding further underscores the importance of these
residues in mediating the function of both paralogs. As
stated earlier, amino acids that fall within the category of
absolutely conserved and solvent exposed are particularly
predictive of regions important for mediating interactions
with other functionally important molecules [26-29].
D71 is most interesting in this regard because it not only
fits this category, but is also found bound to two magne-
sium ions in the ASP1 structure. We know that the bind-
ing of magnesium is not required for overall structural
stability since the structure of ASP1 from C. glutamicum
does not contain metal ion. The precise function of this
region within ASP1 and ASP2 will require further investi-
gation.

Conclusion

The Actinobacteria phylum represents one of the largest
groups of bacteria. Amazingly this diverse collection of
bacteria can be characterized genetically to a first approx-
imation by the presence of only 5 unique genes. All of
these 5 genes, are of unknown function but they are
expected to encode for function(s) that ultimately control
actinobacteria-specific and important biological proc-
ess(es). Understanding the cellular function of a protein
of unknown function is not a straightforward task [20,30].
However, structure determination often provides the
most useful information in this regard [20,30]. In this
work, we report the structure of the first actinobacteria-
specific protein. Our structural data in combination with
sequence analysis further supports the idea that this pro-
tein carries out a novel function. This function is novel in
the sense that the structure of this protein does not match
any known protein, with or without known function.
Given the immense number of structures that are now
available and the wide coverage of function, it is reasona-
ble to propose that ASP1 may mediate a function highly
specific to Actinobacteria. Although it is unclear from the
structural data alone, it seems possible that ASP1 function
may involve some aspect of divalent metal ion interac-
tion. It will be intriguing to determine what contribution,
if any, this highly conserved 'pore' region makes toward
ASP1 function. Our phylogenetic analysis also shows that
another actinobacteria-specific protein ASP2, which is a
paralogue of ASP1, may also have similar structure and
function. Future genetic and biochemical studies of these
proteins is therefore of great interest in linking the conser-

http://www.biomedcentral.com/1472-6807/9/40

vation of the biology of actinobacteria and their 5 unique
genes.

Methods

Protein Expression and Purification

The ASP1 gene (SCO1997) from S. coelicolor A3(2) was
cloned into the pET-22b vector and expressed in E. coli
BL21(DE3) as a full length recombinant protein with a C-
terminal (His).-tag. SeMet protein was expressed in the
methionine auxotroph E. coli B834 using a previously
described method [31]. For expression of both native and
SeMet derivatized ASP1, cells were grown at 37°C to an
ODy, of ~0.6; induced with 1 mM isopropyl beta-D-thi-
ogalactopyranoside (IPTG); harvested after 4 h; resus-
pended in a binding buffer containing 20 mM Tris, pH
7.4, 500 mM NaCl and 10 mM imidazole; lysed in a
French pressure cell; and clarified by centrifugation.
Supernatant was loaded on a 1 mL Ni-column, and
washed with 200 mL binding buffer along with 36 mM
imidazole, and finally eluted at 300 mM imidazole. The
eluted proteins were diluted 5 fold with buffer A (20 mM
Tris, pH 7.5) and loaded onto a 5 mL HiTrap Q HP anion
exchange column (Amersham) for further purification.
Proteins were eluted with a 120 mL linear gradient from
50 to 500 mM NaCl. ASP1 eluted as a single peak at ~260
mM NaCl. Individual fractions from across the peak were
pooled and buffer exchanged into a low-salt buffer (25
mM KCl, 10 mM HEPES, pH 7.5) for crystallization. The
buffer used for gel filtration chromatography contained
20 mM Tris (pH 7.4) and 200 mM KCI.

Crystallization and Data Collection of ASPI

All crystals were grown at 17°C using the hanging drop/
vapour diffusion method. Hanging drops containing 1 uL
of protein solution (5 mg/mL) and 1 uL of mother liquor
(0.1 M MES, 0.55 M magnesium formate, pH6.5~6.8,
0.25~0.5% n-Octyl-beta-D-glucoside, 0~1.5% glycerol)
were dehydrated over a reservoir containing 800 uL of 1.5
M (NH,),SO,. Cubic shaped crystals (100 x 100 x 100
pm3), suitable for data collection, grew after approxi-
mately 3 days incubation. Crystals were flash frozen
directly in a nitrogen cold stream (100 K) with no further
cryo-protection. Diffraction data sets for native and SeMet
crystals were collected at wavelengths of 1.1 and 0.979 A,
respectively. All data was collected at the X25 beamline
using an ADSC Q315 CCD x-ray detector (NSLS,
Brookhaven, NY).

Structure Determination and Model Refinement

SAD data collected to 2.0 A was processed using d *TREK
[32]. All 5 of the expected SeMet sites were located using
HYSS [33,34]. Phasing and density modification were car-
ried out using CNS [35]. Iterative rounds of manual
model building and refinement were performed with
Coot and REFMACS5 until R and Rg,, values converged and

Page 11 of 13

(page number not for citation purposes)



BMC Structural Biology 2009, 9:40

could no longer be improved [36,37]. The coordinates of
the final ASP1 model were deposited in the Protein Data
Bank under accession code 3E35. Surface area calculations
were performed using the program PISA version 1.15 [38].
Structure similarity searches were performed by DaliLite
program v3 [25]. Structural illustrations presented in fig-
ures were generated with PyMOL [39].

Phylogenetic Analysis

Phylogenetic analyses were carried out based on sequence
alignments for ASP1 and ASP2 homologous genes from
18 actinobacterial species. Among these selected species,
only 8 contain one of the two genes, while the others con-
tain both gene copies. Multiple sequence alignments were
created using the ClustalX version 1.83 [40]. The align-
ment was then imported into TREE-PUZZLE version 5.2
for maximum-likelihood (ML) analysis using the WAG+F
model with gamma distribution of evolutionary rates
with four categories [41,42].
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Gene ID and Possible Function of ASP1 homologues and its neighbor-
ing genes in all sequenced actinobacterial strains. For the adjacent
genes of ASP1 (two upstream and two downstream) in all sequenced
actinobacterial strains, their possible function are indicated in brackets
below their gene ID. *: incomplete genome.

Click here for file
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Additional file 2

Gene ID and Accession no. of ASP1 and ASP2 homologues in all
sequenced actinobacterial strains.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-40-S2.pdf]

Additional file 3

Alignment of all available ASP1 homologues from actinobacterial spe-
cies. Conserved residues are colored as such: purple, absolutely conserved
residues; yellow, highly conserved. [ strands and « helices are labeled in
red and blue, corresponding to the ribbon diagram in Figure 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-40-S3.pdf]
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Additional file 4

Alignment of all available ASP1 and ASP2 homologues from actino-
bacterial species. Conserved residues colored in Additional file 2 are also
highlighted here. Unexpected amino acids at conserved positions are high-
lighted in cyan.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6807-9-40-54.pdf]
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