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Abstract

Background: Methods that can automatically assess the quality of computationally predicted
protein structures are important, as they enable the selection of the most accurate structure from
an ensemble of predictions. Assessment methods that determine the quality of a predicted
structure by comparing it against the various structures predicted by different servers have been
shown to outperform approaches that rely on the intrinsic characteristics of the structure itself.

Results: We examined techniques to estimate the quality of a predicted protein structure based
on prediction consensus. LGA is used to align the structure in question to the structures for the
same protein predicted by different servers. We examine both static (e.g. averaging) and dynamic
(e.g. support vector machine) methods for aggregating these distances on two datasets.

Conclusion: We find that a constrained regression approach shows consistently good
performance. Although it is not always the absolute best performing scheme, it is always performs
on par with the best schemes across multiple datasets. The work presented here provides the basis
for the construction of a regression model trained on data from existing structure prediction
servers.

Background

The problem of predicting protein structure from amino
acid sequence has yet to be fully solved, and experimen-
tally determining protein structures requires extensive
human input. Due to the relative ease of determining
amino acid sequences, and the utility of structural infor-
mation, the problem has attracted much attention. As the
accuracy of protein structure prediction algorithms has
greatly improved over the last ten years [1,2], the ability to
precisely determine the quality of protein structure predic-
tions has gained importance. In an attempt to motivate
improvements in this area, the most recent session of the
Critical Assessment of Structure Prediction (CASP)
included a model quality assessment category [3]. CASP is
A biennial competition http://predictioncenter.org that

has been organized to motivate advancements in the area
of protein structure prediction. For this new category,
given a putative structure, competitors were asked to sub-
mit a quality score between 0.0 and 1.0, or to assign an
error estimate (in A) to each residue of the structure.
Twenty-eight groups submitted full structure quality esti-
mates, and eight of those submitted per-residue error esti-
mates.

These eight groups assess structure quality using a variety
of methods, which can be broadly grouped into four
classes. The first class of techniques learns models to
assess the per-residue error based on intrinsic properties
of the predicted structures. The second class forms a pre-
diction based on the quality of a target-template align-
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ment. The third class determines the error by taking into
account different per-residue error predictors. Finally, the
fourth class relies on the consensus of the predictions
obtained from different protein structure prediction serv-
ers. Techniques in the first class include ProQ [4], Victor/
FRST [5] and QUAD [6]. ProQ uses neural networks to
learn a model based on atom-atom contacts, residue-
reside contacts, and agreement with predicted secondary
structure. Victor/FRST uses a linear combination of four
potential energy functions: a pairwise potential, a solva-
tion potential, a torsion angle potential and a hydrogen
bond potential. The relative weights for each function are
optimized on the CASP4 decoy set. QUAD combines sec-
ondary structure, hydrogen bonding, and solvent accessi-
bility information to produce a fitness score for each
residue in its structural environment. Techniques in the
second class include ProQProf [7] and SUBWAy [8]. Pro-
QProf trains a neural network on profile-profile compari-
sons from pairs of profiles for target/template sets.
SUBWAYy generates multiple suboptimal alignments to a
template for a target sequence. The average deviation
between the suboptimal alignments and the optimal
alignment serves as an indicator of structure quality. (A
higher average deviation indicates a lower quality struc-
ture.) Techniques in the third class include ProQlocal [7]
and Meta-MQAP [9]. A prediction by ProQlocal is a sum
of the scores from ProQProf and ProQ. Meta-MQAP que-
ries other quality assessment servers and combines the
results. Lastly, Pcons [10] makes up the fourth class,
which is based on the idea that within an ensemble of
structures predicted from different servers for the target
protein, recurring structures and structural motifs have an
increased probability of being high-quality (i.e., close to
the native state). Driven by this principle, Pcons deter-
mines the quality of a structure in two steps. First, it per-
forms pairwise LGscore alignments [11] between the
query structure and all structures in the ensemble, and sec-
ond it uses the average S-scores [12] computed from these
alignments to determine the per-residue error predictions.
The results of the CASP7 competition showed that Pcons
was the most successful approach in predicting both com-
plete structure quality and per-residue errors and it signif-
icantly outperformed the next best scheme.

In this paper we focus on improving the per-residue error
estimates using consensus-based methods. First, we exam-
ine several static methods for consensus prediction. Sec-
ond, we look at whether different predictors provide
enough consistency for machine learning models to be
effective. In doing so, we present the use of a linear per-
ceptron, standard regression, support vector regression
and a simple weight learning technique to learn an appro-
priate aggregation scheme. Extensive experimental evalu-
ation on data obtained from the CASP6 and CASP7
competitions demonstrates that constrained regression
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provides the biggest gains in performance over the previ-
ous best performing scheme (Pcons). The results of these
experiments indicate that an improved model quality
assessment server could be built. This server would rely on
a series of predictions from existing assessment servers in
order to build a constrained regression model. Given a
new structure for assessment, the server would first query
these servers. Then, it would apply the constrained regres-
sion model to produce the final quality assessment.

Results and discussion

Static Consensus Error Prediction Methods

The work in this paper builds upon a consensus-based
per-residue error prediction method rooted on the same
principles introduced by Pcons. The general procedure
works as follows. Let X be the amino acid sequence of the
query protein and let Sy be its predicted 3D structure. Let

S’ be the true 3D structure for X and let {Sk,S2,..., S

be the structures of X predicted by k different structure pre-
diction methods. For each residue x; of X, let d;(x;) be the

distance between the ith residue of Sy and the ith residue
of S{( obtained after structurally superimposing Sy and
Sﬁ-( using the LGA program [13]. The predicted distance

d(x;) between residue x; in Syand S §( (the error estimate

for position i) is given by
k
dx;) = ) wid(x,) (1)
j=1

where w; is a weight associated with the jth predictor and
2w;=1.0. The idea behind this approach, which is shared
by Pcons, is that each of the k structures over which it aver-
ages can be treated as an expert's prediction for X's real
structure. Thus, the per-residue error can be determined
by a weighted average over the per-residue distances to the
structure of each expert. The various w; parameters control
how the distances between the query and the predictors
are weighted. A straightforward approach is to treat each
of the predictors equally by making all these weights
equal (i.e, w;= 1/k), which corresponds to simple averag-
ing.

The above method differs from Pcons in two important
ways. First, it uses LGA alignments as opposed to LGscore
alignments. An LGA alignment is constructed by attempt-
ing to optimize both the longest continuous sequence
that can fit under a certain cutoff, as well as a global meas-
ure of alignment quality. An LGscore alignment attempts
to find the most significant [12] non-continuous segment
of a model. Second, it averages the raw distances as
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opposed to S-scores [11]. S-scores were developed as part
of an improvement over root mean square deviation cal-
culations for global structural comparison [12] (see the
Methods section for how the S-score is calculated).

To understand the impact of these choices, we examine
the performance obtained by four different schemes. The
first two schemes (LGA-Distance and LGA-S-score) use
LGA to compute alignments, and average either raw dis-
tances or S-scores, whereas the second two schemes
(LGscore-Distance and LGscore-S-score) use LGscore to
compute alignments, again averaging either raw distances
or S-scores. Using LGscore alignments and averaging S-
scores is identical to the Pcons approach, and so we equiv-
alently refer to Pcons as the LGscore-S-score scheme. The
prediction performance achieved by these methods on
two datasets obtained from the CASP6 and CASP7 compe-
titions, (labeled CD6 and CD7, respectively), is shown in
Table 1. The performance was assessed by calculating both
the Pearson correlation coefficient (CC) and the root
mean squared error (RMSE) between the actual and pre-
dicted per-residue errors.

These results show that the performance of the various
schemes differs across the two datasets. For CD6, LGscore-
S-score achieves the best CC while LGA-S-score obtains
the lowest RMSE. For the CD7 dataset, LGA-Distance
shows the best performance in terms of CC and RMSE.
The improvements achieved by the best performing
schemes on the two datasets and metrics when compared
to the next best schemes are significant at p < 0.0001.
Comparing the performance of the schemes using dis-
tance-based averaging over those that average S-scores, we
see that the former lead to better results on CD7, whereas
their relative performance on CD6 is mixed. A similar
dataset specific behavior can be observed by comparing
the performance achieved by the two alignment methods.
LGA-based alignments perform consistently better on
CD7 whereas the relative performance of LGA- and
LGscore-based alignments on CD6 changes based on the

Table I: Prediction performance of the static methods
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averaging scheme (distances or S-scores) and performance
metric.

Learning-based Consensus Error Prediction Methods
Motivated by the inconsistent performance achieved by
the four consensus-based per-residue error prediction
schemes discussed in the previous section, we investigate
the extent to which we can obtain a consensus prediction
method that achieves both a consistent and better per-
formance across different datasets and performance
assessment metrics. Toward this goal we focus on tech-
niques that instead of treating each of the predictors
equally by statically setting the w; parameters to 1/k, they
use machine learning methods to estimate the various w;
parameters directly from the data. We formulate the prob-
lem of learning the w; weights as the following supervised
learning problem. Given a set of training examples x;, each
described by the tuple (d,(x;), (d,(x;), dy(x)..... di(x)))),
where d,(x;) is the actual distance between the ith residue
of Sy and the ith residue of X's true structure, learn the set
of w; values such that

D (@ (x) - d(x,))* @)
is minimized.

Four different schemes were used to learn these weights:
support vector regression (SVR), linear percep-tron, least-
squares regression, and a variant of the least-squares
regression that constraints the w; weights to be non-nega-
tive. Note that with the exception of the linear perceptron,
the other three learning methods do not enforce the con-
straint that 2w; = 1.0. Most of the learning schemes (Table
2) outperform the static prediction methods (Table 1) on
both the CD6 and CD7 datasets. The overall best results
for both datasets were obtained by the constrained regres-
sion method, which achieved an improvement in terms of
RMSE of 20.2% and 21.0% over the best performing static
schemes for CD6 (LGA-S-score) and CD7 (LGA-Dis-

Table 2: Prediction performance of the weight-learning
methods

CDé CD7 CDé CD7
Method CcC RMSE CcC RMSE Method CcC RMSE CcC RMSE
LGA-Distance 0.68 11.71 0.79 7.49 Support Vector Regression 0.68 10.35 0.80 6.41
LGA-S-score 0.66 11.06 0.74 7.78 Linear Perceptron 0.69 9.74 0.80 6.46
LGscore-Distance 0.66 I1.46 0.77 7.66 Standard Regression 0.70 9.32 0.80 6.28
LGscore-S-score 0.70 11.19 0.76 8.18 Constrained Regression 0.70 9.20 0.81 6.19

Values in this table represent the Pearson correlation coefficient (CC)
and root mean squared error (RMSE) between the predicted and true
per-residue distances. Boldfaced entries correspond to the best
performing scheme for each dataset and performance assessment
metric.

Values in this table represent the Pearson correlation coefficient (CC)
and root mean squared error (RMSE) between the predicted and true
per-residue distances. Boldfaced entries correspond to the best
performing scheme for each dataset and performance assessment
metric.
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tance), respectively. Its performance in terms of CC was
similar to that of the best static scheme for CD6 and better
by 3.4% for CD7. Note that the relatively higher gains in
terms of RMSE when compared to the improvements
achieved in terms of CC is due to the fact that the objective
function of the learning methods (Equation 2) is designed
to directly minimize the RMSE of the predictions. Overall,
the prediction improvements and consistency achieved by
the four learning schemes and constrained regression in
particular show that learning methods can be used to
learn how to weight the predictions of each server in order
to obtained better per-residue error estimates.

Since the nature of the model learned by the above meth-
ods is that of weighting the distances of the predictions
obtained from each server, an important question to
answer is how these weights are related to the overall qual-
ity of the predictions produced by each server. Figure 1
plots the weights learned by the constrained regression
method against the quality of the structures generated by
each server. The quality of a predicted structure was meas-
ured by its GDT_TS score. The values for the model
weights and server GDT_TS scores correspond to the aver-
ages over the 80 and 58 structures used in the CD6 and
CD?7 datasets, respectively. From these plots we can see
that even though there is a correlation between the
weights and the GDT_TS scores (0.24 for CD6 and 0.22
for CD7), this correlation is not perfect. There are high-
quality servers that are assigned low weights as part of the
training, indicating that the information provided by

70 -
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them is redundant for estimating the per residue error. On
the other hand, there are servers that do not perform
extremely well, but they are still utilized by the learned
model, suggesting that they provide key information for
improving the error prediction.

Eliminating missing predictions

A potential issue with the above problem formulation is
that, due to the way the training set is constructed, it may
contain missing values. The missing values arise when a
predictor could not provide a prediction for an entire pro-
tein, or just some of its positions. These missing values are
assigned a value of zero, which may confuse the learning
algorithms, as a zero value can mean two different things
depending on its source.

If the original d(x;) value is just missing, then a zero is

uninformative. However, if the zero represents a true d;(x;)

value of zero then the distance between Syand S} at posi-
tion i is zero. This means that the two structures align per-
fectly at this position. In this case d(x;) should be treated
as a zero, but in the former case d(x;) should simply be

ignored. In order to address this problem we developed
two methods for adjusting the training data in order to
compensate for the issue of d;(x;) values of zero.

The first method eliminates the confusion due to missing
values by simply filling the missing values using estimates
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obtained from the other examples in the training set. (See
the section called "Filling in missing values" in the Meth-
ods section for a precise description of how this is done.)
The results achieved by this approach (Table 3) show that
there is no clear advantage in building models on the
filled datasets. Excluding the linear perceptron, which
shows a markable decrease in RMSE performance, the
gains achieved by the other methods are limited.

The second method addresses the missing values problem
by creating a custom training set for each test position
encountered. Specifically, for a given test position, the
training set contains only those examples that have at least
the same set of predictors present as those in the test posi-
tion. As the set of positions tested by the custom training
set approach are a subset of the CD6 and CD7 datasets, we
refer to them as the PD6 and PD7 datasets, respectively.
Exactly how these datasets differ from the CD6 and CD7
sets is described in the section called "Evaluating weight
learning algorithms". Values for w; are learned from the
training set, and these weights are used to classify the
query position ¢ according to Equation 1. Table 4 shows
the results from testing models built using such custom
data sets.

Because these results were obtained on the PD6 and PD7
datasets they are not directly comparable to those
reported in Tables 2-3, which were obtained on the CD6
and CD7 datasets. For this reason, Table 4 also shows the
performance of the weight-learning methods trained on
the entire training set and the static consensus error pre-
diction methods. These results are shown under the head-
ings "Global training" and "Static consensus",
respectively. Analyzing the performance of the custom
training methods we observe that constrained regression
once again shows consistently good performance, with
the best correlation coefficient for both PD6 and PD7.
Constrained regression also shows the best RMSE for PD7,
and is within 4% of the best RMSE (3.46 as compared to
SVR at 3.33) for PD6. However, comparing the results

Table 3: Prediction performance of the weight-learning methods
with filled values.

CDé CD7
Method CcC RMSE CcC RMSE
Support Vector Regression 0.69 10.21 0.80 6.36
Linear Perceptron 0.68 11.31 0.79 7.45
Standard Regression 0.69 9.48 0.80 6.26
Constrained Regression 0.71 10.04  0.81 6.37

http://www.biomedcentral.com/1472-6807/9/41

obtained by the custom training methods over those
obtained by the methods trained using the entire training
set (even when there are missing values), we see that the
latter achieve consistently better performance. An expla-
nation for this performance degradation is that the size of
the training set of each custom training problem is rela-
tively small, and as such the models are not as effective as
those learned on the entire dataset.

Conclusion

The results presented in this study reveal several interest-
ing trends. First, a machine learning framework can be uti-
lized to learn models that intelligently weight the different
servers in the context of consensus-based error prediction.
Second, constrained regression outperforms or performs
on par with more complicated learning techniques while
preventing over-fitting. This performance is consistent
across two CASP datasets, in which care was taken to
include as much data as possible. Third, filling missing
values with an approximation does not produce consist-
ent gains in performance. In the same vein, customizing
training sets to assist machine learning techniques does
not produce substantial gains in performance over static
prediction methods on the same data. Moreover, their
overall performance is considerably worse than that
obtained by the models trained using all the training data,
even when they contain missing values.

The types of models studied in this paper learn how to
weight the predictions of a fixed set of protein structure

Table 4: The average correlation coefficient (CC) and RMSE for
the PD6 and PD7 datasets.

PDé6 PD7

Method CC RMSE CC RMSE
Custom training

Support Vector Regression 0.87 3.33 0.89 2.86

Linear Perceptron 0.87 338l 0.89 293

Standard Regression 0.70 6.02 0.82 3.80

Constrained Regression 0.87 346 0.89 2.86
Global training

Support Vector Regression 0.90 297 090 2.67

Linear Perceptron 0.88 3.64 0.89 2.90

Standard Regression 0.89 3.20 0.90 2.76

Constrained Regression 0.89 3.15 0.89 2.79
Static consensus

LGA-Distance 0.86 429 0.89 3.19

LGA-S-score 0.86 3.74 083 3.56

LGscore-Distance 0.67 5.56 0.72 4.48

LGscore-S-score 0.81 4.57 0.79 4.33

Values in this table represent the Pearson correlation coefficient (CC)
and root mean squared error (RMSE) between the predicted and true
per-residue distances. Boldfaced entries correspond to the best
performing scheme for each dataset and performance assessment
metric.

Values in this table represent the Pearson correlation coefficient (CC)
and root mean squared error (RMSE) between the predicted and true
per-residue distances. Boldfaced entries correspond to the best
performing scheme for each dataset and performance assessment
metric.
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prediction methods. Consequently, in order to use these
models for assessing the quality of a protein's predicted
3D structure, the protein needs to also be predicted by the
same set of prediction methods on which the model was
trained. In our study, the training and testing of these
models are done in the context of data obtained in the
course of a CASP competition, satisfying the above
requirement. However, models of this type can also be
trained and applied in order to assess the quality of a pro-
tein's predicted 3D structure outside the context of a CASP
competition. Specifically, a set of existing publicly availa-
ble structure prediction servers will be used to define the
fixed set of protein structure prediction methods whose
weights will be learned by the models. By querying this set
of servers with sequences from recently released struc-
tures, the resulting predictions can be used for training.
During error prediction, the same set of servers will be
used to predict the structure of the query protein X and
their pairwise LGA alignment with Sy will provide the
dj(x;) distances in Equation 1 in order to compute the per-
residue error estimates along with the weights learned
during training. Moreover, as new prediction servers
become available and old ones drop out of favor, the
underlying models can be retrained to use the new set of
prediction methods. Note that in the above framework, by
restricting the training set to sequences that have only
been recently structurally characterized ensures that the
prediction servers actually make predictions, rather than
just querying a structure database for the true structure.
Finally, as the results in Figure 1 indicate, for many serv-
ers, the weights that are learned are either zero or very
small, suggesting that the above framework can achieve
good performance with a relatively small number of serv-
ers.

Methods

Dataset

The data used in this study comes from the CASP6 and
CASP7 experiments. There are 66 target proteins and 57
predictors from CASP6, and 95 target proteins and 80 pre-
dictors from CASP7.

The LGA program [13] is used to align each pair of struc-
tures with the options -3 -ie -d:4.0 -00 -sda. These are the
same options used by the CASP assessors.

Each of the CASP datasets can be viewed as a matrix,
where the columns correspond to the different predictors,
and the rows of the matrix are obtained by concatenating
the sets of predictions from each of the residues. An (i, j)
entry in the matrix represents the distance between a resi-
due of the row submission to the corresponding residue
in the column submission. These distances are derived
after super-imposing the structures of the two submis-
sions using LGA. If a particular predictor j did not submit

http://www.biomedcentral.com/1472-6807/9/41

a prediction for a protein X, the (i, j) entries for all rows i
corresponding to protein X will be empty. Also, some (i,
j) entries can be missing because the predictor did not
provide predictions for these positions. We will refer to
the matrices for the CASP6 and CASP7 datasets individu-
ally as the CD6 and CD7 matrices, respectively. The CD6
matrix contains data for 824,145 positions and the CD7
matrix contains data for 918,467 positions. Figure 2
shows a histogram of the radius of gyration values for the
proteins in both the CD6 and CD7 datasets, while Figure
3 shows a histogram of pairwise sequence similarities.
Radius of gyration is a measure of the structural size of a
protein. As Figure 2 shows, the proteins in our datasets
have a range of sizes. The proteins in both sets are spread
across a wide variety of folds, with 33 unique folds in the
CD6 set, and 37 unique folds in the CD7 set. For the CD6
set, the minimum occupancy for a fold was 1, the maxi-
mum was 4, and the average was 1.3. For the CD7 set, the
minimum occupancy was 1, the maximum was 15, and
the average was 2.1.

Evaluating weight learning algorithms

We evaluate the three data-based approaches for learning
the weights described in this paper (unfilled, filled, and
custom training sets) using the CASP6 and CASP7 datasets
as follows.

The unfilled and filled approaches are evaluated using a
leave-one-protein-out framework. A protein is selected,
and all positions from this protein are assigned to the test
set. All remaining examples are used as the training set.
The whole process is repeated for each available protein,
so every position in the CD6 and CD7 matricies is used as
a test position at some point. The difference between the
unfilled and the filled approaches is that in the latter, the
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empty entries of the CD6 and CD7 matrices are filled
using the method described in the next section.

The custom training set approach is evaluated under a
leave-one-position-out framework. A single position x;
serves as the test set and all positions from proteins other
than X are searched to find the training set. The training
set for position x; corresponds to those rows of the CD6
and CD7 matrices whose non-empty columns are a super-
set of the non-empty columns of x;'s row. Only the values
from the set of non-empty columns in x; are used when
training. This creates a training set with no missing values
(i.e., the sub-matrix formed by the rows corresponding to
the training set and the set of columns in the test position
is completely filled). Note that it would seem that this
approach will require learning 824,145 models for CASP6
and 918,467 models for CASP7 (one for each row of the
CD6 and CD7 matrices). However, since the non-empty
columns for the rows of the same protein will usually be
the same (leading to the same training sets), the number
of models actually required to be learned is much smaller.
Occasionally, rows from the same protein will differ, due
to incomplete CASP7 predictions, but these cases are rare.
To further reduce the necessary number of models, we did
not test those positions whose training sets could not be
used for at least nine other positions (i.e., each model that
we learned had to be used to test at least ten positions).
This reduced the total number of models learned to only
553 for CASP6 and 1064 for CASP7, allowing us to test
96,089 positions for CASP6 and 198,612 positions for
CASP7. We will refer to these datasets as the PD6 and PD7
datasets, respectively.

Filling in missing values
The scheme that we used to fill in the missing values in the
CD6 and CD7 matrices is based on similar techniques

http://www.biomedcentral.com/1472-6807/9/41

that were developed in the field of collaborative filtering
[14-16]. An empty (i, j) position is filled by assigning to it
a value that is obtained by averaging over the non-empty
positions of column j, while taking into account the val-
ues along the rows in which these non-empty positions
occur. Specifically, let D be one of the CD6 and CD7
matrices, let 4 = (2;D(i, j))/m;be the mean value of the m,
non-zero entries of row i in D, let D' be the matrix
obtained from D by subtracting from each non-empty (i,
j) position its row average (i.e, D'(i, j) = D(i, j) - 1), and
let 4= (2D '(i, j))/m; be the mean value of the m; non-zero
entries of column j in D'. Then, an empty position (i, j) is
assigned the value D(i, j) = 44 + 1. Note that, in the case of
filling a testing set, the values for x4 from the training set
are used to fill any missing values.

The advantage of this method is that it accounts for differ-
ences in the underlying structural alignments, which is
important because each of the alignments between a row
prediction and a column prediction provides its own con-
text. Subtracting y; from each row places all of the rows
into a generalized context, and allows for the accurate
computation of z; values. By subsequently adding y; to y;,
the method provides an estimate of what the y; value
should be in the context of the original row i.

Pcons

Pcons values are taken from the CASP website http://
www.predictioncenter.org/ with the exception of some
incorrect values resulting from the bug noted in [3]. Cor-
rected values were obtained from the Pcons authors and
the reported performance here reflects the new numbers.
Pcons uses LGscore-based structural alignments in place
of the LGA minimization employed in this paper. Let
LGj(x;) be the distance between the ith residue of Sy and

the ith residue of S g( obtained after structurally superim-
posing Sy and S} using the LGscore algorithm [11]. Let
pc(x;) be the Pcons prediction corresponding to d(x;) in

Equation 1. Pcons uses the following three equations to
produce a prediction.

1
S(x)=——
5
k
() = Y )(x) (4)
j=1
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Note that equation 3 corresponds to the S-score for a posi-
tion in an LGscore alignment.

pe(x;) =5 1 (5)

Weight learning algorithms

Linear perceptron

One way of learning values for w; in Equation 1 is to use
Rosenblatt's linear perceptron classifier [17]. This is an
online learning algorithm that iteratively updates a weight
vector w for each training example x based on the differ-
ence between its actual and predicted values. Pseudo-code
for our implementation of this algorithm is shown in the
appendix. For each position, the linear perceptron deter-
mines the error of each predictor (line 4). Each predictor
is then assigned a weight that is inversely related to its
error and the vector of these weights (¢) is scaled to sum
to one (lines 5 and 6). Note thatin line 5, the X,¢,/S factor
is used to reduce the difference between lower and higher
weights. We found that using this smoothing factor
improves results.

The learning rate « is updated based on the error of the
prediction for each example (d(x)), as determined using
Equation 1. In the case of the unfilled CD6 and CD7 data-
sets, we use d(x)/Xw; as the prediction. This prevents the
sparsity of the set from skewing the values learned for w.
The vector ¢ becomes the update to w (line 8), and w is
scaled to sum to one after processing each training exam-
ple (line 9). The final weights are the values of w after five
iterations over the training data, as a test (results not
shown) showed a small difference between the weights
from the fourth and fifth iterations. Note that this is a var-
iation on a traditional linear perceptron, in which w is
updated according to w < w + «a(real - predicted)d. We use
the variation shown in the appendix because it performs
better for our problem (results not shown).

Support vector regression (SVR)

We used the SVMLight implementation [18] for support
vector regression. Default values were used for the tube
width and regularization parameters. The details of this
regression technique have been described in detail else-
where [19] and will not be covered here.

Standard and constrained regression

We use Matlab for standard regression and for constrained
regression in which the weights w; must be positive. We
also experimented with a second constrained regression
formulation. In this formulation, the weights w; of the pre-
dictors must be positive and sum to one. This regression
formulation could not learn an appropriate set of weights

http://www.biomedcentral.com/1472-6807/9/41

in the majority of cases, so the results are not included
here.
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Appendix

Algorithm 1: Learning Weight Vectors with the linear per-
ceptron algorithm

Input: S: Number of Predictors.

m: Number of Training Samples.

N: Number of Training Iterations.

Output: w: Weight Vector.

1w« 1/k

2:forn=1to N do

3: forx=1tomdo

4: e« |di(x) - dy(x) |V,
5 g 1/(e+2e/S) VY
6: g d/lldll

7 a<«|d(x)-d(x)|/m
8 w«w+agp

9:  w<«w/||lwl|,

10: end for

11: end for

12: Return w
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