BMC Structural Biology

Research article

Conservation of structure and activity in Plasmodium purine

nucleoside phosphorylases
Apirat Chaikuad!2 and R Leo Brady*!

@,

BiolVled Central

Address: 'Department of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK and 2Current address: Oxford Structural Genomics Consortium,

Oxford, UK

Email: Apirat Chaikuad - Apirat.Chaikuad@sgc.ox.ac.uk; R Leo Brady* - L.Brady@bris.ac.uk
* Corresponding author

Published: 3 July 2009
BMC Structural Biology 2009, 9:42  doi:10.1186/1472-6807-9-42

Received: 26 February 2009
Accepted: 3 July 2009

This article is available from: http://www.biomedcentral.com/1472-6807/9/42

© 2009 Chaikuad and Brady; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Purine nucleoside phosphorylase (PNP) is central to purine salvage mechanisms in
Plasmodium parasites, the causative agents of malaria. Most human malaria results from infection
either by Plasmodium falciparum (Pf), the deadliest form of the parasite, or by the widespread
Plasmodium vivax (Pv). Whereas the PNP enzyme from Pf has previously been studied in detail,
despite the prevalence of Pv little is known about many of the key metabolic enzymes from this
parasite, including PvPNP.

Results: The crystal structure of PYPNP is described and is seen to have many features in common
with the previously reported structure of PfPNP. In particular, the composition and conformations
of the active site regions are virtually identical. The crystal structure of a complex of PfPNP co-
crystallised with inosine and arsenate is also described, and is found to contain a mixture of
products and reactants — hypoxanthine, ribose and arsenate. The ribose Cl' in this hybrid complex
lies close to the expected point of symmetry along the PNP reaction coordinate, consistent with a
conformation between the transition and product states. These two Plasmodium PNP structures
confirm the similarity of structure and mechanism of these enzymes, which are also confirmed in
enzyme kinetic assays using an array of substrates. These reveal an unusual form of substrate
activation by 2'-deoxyinosine of PPNP, but not PfPNP.

Conclusion: The close similarity of the Pf and Pv PNP structures allows characteristic features to
be identified that differentiate the Apicomplexa PNPs from the human host enzyme. This similarity
also suggests there should be a high level of cross-reactivity for compounds designed to inhibit
either of these molecular targets. However, despite these similarities, there are also small
differences in the activities of the two Plasmodium enzymes.

Background

Genomic studies [1] of the Apicomplexa parasite Plasmo-
dium falciparum - the causative agent of life-threatening
malaria - have confirmed earlier observations that this
parasite lacks metabolic pathways for de novo synthesis of
purines, and hence that purine salvage is essential for their

survival. Inhibitors that block recycling of purines should
therefore form a viable basis for novel malarial therapeu-
tics. Purine nucleoside phosphorylase (PNP) in Plasmo-
dium forms a key enzyme in the recycling of
predominantly host-derived purines, catalysing the phos-
phorolysis of inosine to produce the major purine precur-
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sor for the salvage pathway, hypoxanthine, and ribose-1-
phosphate (Figure 1a). PNP also catalyses phosphorolysis
of methylthioinosine, and hence is believed to play an
important role in the recycling of this purine from the
polyamine biosynthesis pathway [2]. Although unlikely
to be of direct biological relevance, arsenate can replace
phosphate in this reaction generating ribose-1-arsenate,
which is then rapidly and irreversibly hydrolysed to ribose
and arsenate (Figure 1b). This alternative reaction is of
interest to dissect the mechanistic details of PNP and has
contributed to inhibitor development. Kinetic isotope
(KIE) studies have been used to study the PNP mechanism
in detail [3,4] and indicate that catalysis proceeds via a
classic SN1 nucleophilic substitution reaction in which, at
the transition state, the ribitol ring forms an oxocarbe-
nium ion (Figure 1a). The derived conformation of this
ring has been exploited in the design and synthesis of
tight-binding and specific PNP inhibitors such as Immu-
cillin-H (ImmH) (Figure 1c). ImmH is believed to mimic
the transition-state formed during this reaction, and binds

http://www.biomedcentral.com/1472-6807/9/42

to the human form of the enzyme (hPNP) with higher
affinity (K; = 56 pM) than do either the reaction substrate
inosine (K,, = 40 uM) or product hypoxanthine (K,, = 10
pM). Binding of ImmH to PNP has been studied in much
detail and crystal structures of its complexes with a range
of PNP enzymes including bovine PNP (bPNP, together
with PO,, [5]) and Plasmodium falciparum PNP (PfPNP,
together with SO,, [6]) have been reported to resolutions
of 1.5 A and 2.2 A respectively. In vivo genetic knock-out
studies have recently confirmed PfPNP as the molecular
target for the anti-parasiticidal activity of this family of
compounds [7].

Crystal structures and sequence homology studies have
distinguished two broad families of PNP enzymes: those
that form trimers (such as the mammalian PNPs, Type 2)
and those that are hexameric (such as E.coli PNP (EcPNP),
Type 1). These groupings correlate with functional differ-
ences in that the hexameric enzymes have wider substrate
specificity, in particular the ability to use 6-aminopurine
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Catalysis by PNP. Schematic diagrams showing the chemical reactions catalysed by PNP: (a) phosphorolysis, and (b) arsenol-
ysis. These diagrams are based on arsenolytic/hydrolysis transition-state structures of PNPs [17,3,4]. Note protonation at N7,
leading to formation of a positive charge, and glycosidic-bond cleavage resulting in formation of a ribo-oxocarbenium ion and
negative charge in the purine ring at the transition state. This process occurs prior to nucleophilic attack as the catalytic reac-
tion of PNP follows a SN | type mechanism. (c) shows the transition state mimc inhibitor, Immucillin H (ImmH).
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nucleosides as substrates. Using phylogenetic studies [8]
showed that the Plasmodium PNPs are outliers with equal
genetic distance between PNPs and uridine phosphory-
lases. Crystallographic studies of PfPNP [6,9] have shown
it forms a hexameric assembly suggesting its closer align-
ment with the Type 1 PNP group, although functionally it
has been noted that, unlike other hexameric PNPs, adeno-
sine is not a substrate for P/PNP. These distinguishing fea-
tures suggest selectivity for PfPNP, in preference to its
mammalian homologues, should be achievable in the
development of novel anti-malarials. However, the gener-
ality of these distinguishing PNP features across Plasmo-
dium parasite species remains unclear. A recent crystal
structure of PNP from the closely related simian parasite
Plasmodium knowlesi (PkPNP) has also been determined
(entry 2b94 in the Protein Data Bank (PDB)) and,
although forming a similar hexameric arrangement, the
arrangement of the subunits differs from PfPNP. This
largely arises as three loop regions at the subunit interface
have been traced to different conformations. In addition,
the arrangement of residues in the substrate binding
pocket - which does not contain substrate and adjoins
one of the loops and the subunit interface - differs signif-
icantly in the PEPNP structure relative to P/PNP. It is there-
fore unclear whether PfPNP represents an archetypal or
unique member of the Plasmodium PNP enzyme family.

In this study we have therefore extended studies of Plasmo-
dium PNPs, firstly through a structural analysis of PNP
from the second most prevalent human-specific malaria
parasite, Plasmodium vivax (PvPNP). Malaria due to Plas-
modium vivax infection accounts for up to 40% of the
annual incidence of the disease [10] and, although gener-
ally less severe, causes considerable morbidity. A genomic
sequence for Plasmodium vivax has recently become avail-
able [11]. PvPNP and PfPNP share 81% amino acid
sequence identity. Secondly, although the enzyme mech-
anism involving generation of a ribitol oxocarbenium ion
is believed to be general for all PNPs, the identity, contri-
bution and movements of amino acids within the active
site during catalysis differs between various forms of PNP.
To further mechanistic understanding of the unusual
group of Plasmodium PNPs, we have also determined the
crystal structure of the arsenolytic complex of PfPNP with
inosine which is found to contain a mixture of product
and reactant components from the reaction. Parallel
kinetic and binding studies are further used to pinpoint
Plasmodium-specific features of PNP.

Results

Crystal structure of PvPNP

Overall structure

The PvPNP crystal structure was refined against 1.85 A res-
olution data (summarised in Table 1) and the model con-
tains all of the protein residues with the exception of the
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disordered active site loop (residues 212-224). The R32
crystals displayed considerable anisotropy in the distribu-
tion of their diffraction intensities leading to the rejection
of many higher resolution reflections during processing.
Nonetheless, about 70% of the processed reflections have
intensities with I/(sigma I) greater than 3 in the highest
resolution shell, hence the structure has been refined
against all available data to 1.85 A. The crystallographic
asymmetric unit contains a monomer of PvPNP which
adopts the familiar single-domain fold topology
described previously for hexameric PNPs from other spe-
cies (e.g. [6,9,12,13]). Each PvPNP monomer is com-
prised of a 10-stranded f-sheet core, which forms the base
of the catalytic site, and eight o-helices, which are
involved in subunit contacts (labelled in Figure 2). The
total number and position of secondary structure ele-
ments in PvPNP are comparable to those in PfPNP,
although small variations in the number of f-strands and
o-helices are evident due to different assignments when
comparing PfPNP structures ([9,6] and the PfPNP solved
in this study). An extra a-helix in the ordered active site
loop of PfPNP is not observed in the PvPNP structure, but
may be formed when the PvPNP active site loop is struc-
tured.

The nucleoside binding site of the PUPNP enzyme in this
structure is observed to be empty although there is elec-
tron density consistent with three bound water molecules
within the substrate binding site. Additionally, an anion -
presumably sulphate from the crystallisation buffer which
contained 0.2 M LiSO, - was identified and this anion
occupies the phosphate binding pocket of the enzyme. Its
position is consistent with sulphate and phosphate
groups observed in other PNP structures including P/PNP
[6,9].

When the R32 symmetry operators are applied, PvPNP is
seen to form a hexameric assembly that matches the
arrangements previously reported in crystal structures of
PfPNP [6,9] and EcPNP [14]. Presumed to be the biologi-
cally-relevant structure, this hexamer is a disc-shaped sin-
gle-layer with an overall diameter of about 100 A and a
thickness corresponding to the width of a monomer
(approximately 50 A) with an empty central channel of
diameter 20 A. The hexameric PvPNP appears to be assem-
bled from a trimer of dimers, where the dimer pairs are
related by a crystallographic three-fold symmetry axis run-
ning through the central channel, corresponding to the
view in Figure 2. The two monomers in each pair of dim-
ers lie anti-parallel and are related by a crystallographic
two-fold axis perpendicular to the major three-fold axis,
with the two active sites lying 22 A distant from each
other.
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Table I: Summary of crystallographic data.

PvPNP PfPNP hypoxanthine-ribose-AsO, complex
PDB code 3EMV 3ENZ
Space group R32 14,22
Unit cell a=b=948A, a=b=1778Ac=2539A
c=1213A a=p=y=90.0°
o =f=90.0°
vy =120.0°
Resolution range (A) 33.98 - 1.85 (1.92 - 1.85) 30.94 — 2.03 (2.10 - 2.03)
Unique reflections 14,619 (875) 129,248 (12,783)
Completeness (%) 80.5 (49.0) 99.4 (99.8)
Redundancy 6.0 (4.4) 10.7 (8.0)
I/ol 17.6 (4.3) 18.5 (2.7)
Rimerge 0.095 (0.234) 0.106 (0.556)
Solvent content 33.5% 58.9%
Refined model
No. Protein chains | 6
No. Protein atoms 1921 11268
No. Other atoms (ligand, organic solvent and water) 80 779
No. TLS groups 30
Rexce 0.193 0.160
Rfree 0.233 0.193
FOM 0.852 0.891
Mean By, protein (A2) 25.7 16.1
Mean By, other atoms (A2) 29.6 288
rms bonds (A) 0.012 0.016
rms angles (°) 1.611 1.396

Table shows processing and refinement statistics for the diffraction data and models from both crystal forms. The numbers in parentheses refer to
data from the highest resolution shell.
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Figure 2
Overall structure of PvPNP. The ribbon diagram shows a monomer of PPPNP with the secondary structure elements

labelled. The bottom panel shows the assembled hexamer with each subunit in a different colour, viewed perpendicular to the
three-fold axis.
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Inter-subunit contacts in PvPNP are comparable to those
reported in the previous PfPNP-inosine structure [9] but
different from those observed in the PkPNP structure
[PDB:2B94]. The loop (residues 159-170) that connects
fs and ¢ is particularly evident in its contribution to the
subunit interactions. This loop is adjacent to the central
channel and forms contacts both with the neighbouring
subunit in each dimer pair - such as A and B - and also
extends to a monomer of the adjacent dimer - such as A
and C. In the former case, a distinctive hydrogen bond is
formed between Tyr 162 of chain A and Glu 78 of chain
B, which has also been described for PfPNP [9] and PNP
from Thermus thermophilus (TtPNP) [15]. The length of
this loop differs between hexameric PNP enzymes from
different species. Relative to PkPNP and TtPNP, the Pv and
Pf enzymes have loops extending about 11 A further from
the core, whereas in EcPNP the equivalent loop extends
about 6 A. In the PfPNP-inosine structure, Schnick et al.
[9] showed that this loop also contacts the ligand and pro-
posed that this elongated loop plays an important role for
not only quaternary structure formation but also in deter-
mining accessibility to and the conformation of the active
site cavity. With no substrate bound in the current struc-
ture it is not possible to confirm this is also the case for the
PvPNP enzyme.

The active site of PvPNP

In common with PfPNP, the phosphate/sulphate binding
site of PvPNP (Figure 3) is formed mainly by two arginine
residues (Arg 89 and Arg 46' from the neighbouring mon-
omer), a backbone interaction with Gly 24, and both
backbone and side chain interactions with Ser 91.
Another arginine, residue 27, also lies in this region, but
points away from the bound sulphate in the PuPNP struc-
ture. This is similar to the arrangement in PfPNP with sul-
phate bound [9] but differs from PfPNP with arsenate
bound (see below). Overall, the PO,/SO, binding pocket
in PvPNP is essentially identical to that previously
described for PfPNP.

Although neither base nor sugar are bound in the nucleo-
side binding site of the PyPNP-SO, structure, these sites
can be readily identified by overlaying the hypoxanthine
and ribose sugar molecules from the PfPNP-hypoxan-
thine-ribose-AsO, structure (see next section). This shows
that the base would be primarily accommodated via =-
stacking of Tyr 161 and Pro 210, and also Trp 213 when
the active site loop (207-225) is ordered. Other signifi-
cant contributors include Ser 92, Val 182, Cys 93 and Gly
94. Asp 207, which has been proposed to play an impor-
tant role in stabilisation of the transition state complex
[6,16] is also present in the PyvPNP purine-binding site,
although in a conformation typical of an empty binding
site [9]. The composition and structure of the base bind-
ing pocket in PvPNP is essentially identical to that
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described for PfPNP, whereas there are substantial differ-
ences when compared to this region in the PkPNP struc-
ture. Although the identity of the key residues is unaltered
in PkPNP, the altered conformation of the 159-170 loop
results in a substantial (4 A) displacement of Tyr 157
which, along with Tyr158 (equivalent to Tyr 161 and Tyr
162 in PvPNP), now occupies the space in which the base
normally binds. This leads to considerable distortion of
the base binding pocket.

Similarly, the sugar binding site of PvPNP is virtually iden-
tical to that of P/PNP. By analogy with the PfPNP com-
plex, the sugar O2' and O3' hydroxyl groups are expected
to interact with the side chains of Arg 89 and Glu 185. His
8' from the neighbouring monomer is in a position to
bind the ribose O5' hydroxyl group and Ser 92 is posi-
tioned to hydrogen bond to the ribosyl ring O4'. Other
residues such as Tyr 161, Met 184 and Val 67 also line the
cavity in both structures. By contrast, although many of
the above interactions are also possible in the PkPNP
structure, the altered conformation reported for the 159-
170 region once again leads to changes in the sugar bind-
ing pocket, with His 8' considerably displaced and its
equivalent position now occupied by Lys 164. Tyr 160, as
discussed above, is present but displaced by about 4 A and
there is no direct equivalent to Val 67, although its role
may be partially replicated by Ala 66.

Crystal structure of PfPNP complexed with hypoxanthine,
ribose and arsenate

This structure was obtained by co-crystallising P/PNP with
inosine and arsenate to produce a PfPNP, hypoxanthine,
ribose and arsenate complex (PfPNP-HRA) (see below).
The asymmetric unit consists of one hexamer of PfPNP in
which there are six very similar, but not identical, subu-
nits. The crystal packing differs from previously reported
structures for P/PNP [6,9] although the arrangement of
monomers is very similar. All monomers in the hexamer
have essentially the same overall secondary structure (root
mean square deviations (rmsd) of equivalent Cas
between monomers range from 0.16-0.40 A) with the
exception of only one area. This is in the active site loop
(206-224), part of which forms a short helix in four mon-
omers (A, B, D and E) whereas this is not present in the
remaining two chains (C and F).

The active site

Although inosine and arsenic acid were included in the
crystallisation mixture with PfPNP, the resulting electron
density was inconsistent with inosine being present in the
active site. The PNP-catalysed arsenolysis reaction is simi-
lar to phosphorolysis, however the ribose-1-arsenate
product is unstable and is rapidly hydrolysed into ribose
and arsenate [17] as shown in Figure 1.
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Figure 3
The active site of the PvPNP. The top panel illustrates the dimer pair and their binding sites with the bound sulphate anions

(from the crystal structure) and the inosine substrates (modelled into the PvPNP structure based on superimposition of the
PfPNP-inosine structure, PDB:2BSX). The bottom schematic diagram shows possible key residues of the PvPNP active site
(numbered according to the system previously used for PfPNP) with hydrogen bonds as dashed lines. Most residues are from
the parent monomer, while those labelled 'b' are from the neighbouring subunit across the dimeric surface.
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In accordance with the shapes, sizes and positions of elec-
tron density observed within the active site, the products
hypoxanthine base, ribose sugar and arsenate anion
(AsO,) - formed from the irreversible arsenolysis of inos-
ine followed by hydrolysis of the ribose-1-arsenate — were
modelled in to the observed electron density map. These
proved to be a good match for the density and were well-
behaved in subsequent refinement. Based on the known
sequential mechanism for release of the products [18], the
inclusion of the arsenate group correlates with the pres-
ence of the ribose sugar which consecutively matches the
presence of hypoxanthine. These product and reactant
molecules are assumed to be accommodated within the
active site in a similar way to enzyme intermediates in
accordance with the observed catalytic conformation of
the enzyme, including a closed active site loop with the
characteristic helical segment and the side-chain confor-
mation of Arg 27 (see below).

The binding pocket is clearly defined in this structure (Fig-
ure 4). In essence, the composition of the pocket is iden-
tical to that previously described in the PfPNP structures
[6,9]. However, there are important differences in the con-
formations of several key catalytic residues.

Arsenate binding site

In all subunits, the arsenate moiety is stabilised mainly by
two arginine side chains (Arg 88 and Arg 45' of the neigh-
bouring subunit) and further hydrogen bonds are formed
with donors from the hydroxyl group of Ser 91 and the
backbone amino groups of Gly 23 and Ser 91. These inter-
actions are similar to those observed for the bound sul-
phate in the PfPNP-SO, [9] and the PfPNP-ImmH [6]
structures. However the participation of the Arg 27 residue
in the anion binding pocket, where its guanidinium side
chain forms charged hydrogen bonds with the arsenate
molecule, has not been observed in structures with sul-
phate bound [16,19]. Despite the inclusion of arsenic
acid, this complex was crystallised under conditions heav-
ily buffered to neutral pH (4 M sodium formate) and
hence the ionisation state of the arsenate is expected to be
the same as for sulphate (both are dianions at this pH,
believed to be the active form in catalysis [20]). Similarly,
as both crystal structures have been determined at neutral
pH no alterations in the ionisation states, and hence over-
all conformation, of the three arginine residues that dom-
inate the arsenate/phosphate binding site would be
expected. In the P/PNP-HRA complex, in five of the subu-
nits the Arg 27 side chain points toward the active site
(‘closed' conformation, average torsion angle 3, = 163°
and y, = 175°) and forms hydrogen bonds with oxygen
atoms of the arsenate ion. This conformation appears to
increase ordering of the anion and leaves little unoccu-
pied space in the binding pocket. By contrast, in chain F
this arginine is in an 'open' conformation with its side
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chain pointing away from the active site (torsion angle y,
=178° and y, = 75°) and hence does not interact with the
arsenate ion.

Nucleoside (ribose sugar and hypoxanthine) binding site

All six binding pockets in the hexamer bind both ribose
and hypoxanthine in a similar conformation with equiva-
lent hydrogen-bond interactions formed to residues in
each active site (Figure 4). The ordered active site loop
brings Pro 209, Trp 212 and Phe 217 into the hydropho-
bic pocket, resulting in the hypoxanthine being oriented
by n-stacking and van der Waals interactions. Similar to
the PfPNP-Imm complex, the carboxylate group of the
Asp 206 side chain interacts directly with N7 of the hypox-
anthine, and has been proposed to be the general acid/
base for protonation of N7 of the substrate in the transi-
tion state [14,6,16]. The conformation of this flexible Asp
side chain differs from that observed in the PfPNP-SO,
and PfPNP-ino structures where Asp 206 points away
from the active site and forms hydrogen bonds to the
hydroxyl group of Ser 91.

Also of interest is a bound water molecule close to O6 of
the purine base, which is present in all subunits with Arg
27 in the 'cdosed' conformation. This water molecule acts
as a bridge linking Trp 212 (N,;) (a residue from the active
site loop), Asp 206 (O;;) and O6 via a hydrogen-bond
network (Figure 4), and hence may play a role in catalysis
or stabilisation of the transition state. In contrast, this
water molecule is not observed in chain F, consistent with
a state in which the active site loop is destabilised.

The ribose sugar binds in between the arsenate anion and
the hypoxanthine base with its oxygen atoms (both
hydroxyl oxygens and O4') fully engaged with hydrogen
bonds formed with several residues (Figure 4). The inter-
actions in this region are not significantly different from
those previously described in the PfPNP-ino [9] and the
PfPNP-ImmH [6] structures. There appear to be no con-
formational alterations associated with binding of the
ribose sugar, consistent with the observation in the EcCPNP
structure [16].

In summary, the hexameric structure of the PfPNP com-
plex appears to contain two states of the enzyme. In five
of the subunits (chains A - E) Arg 27 is in a 'closed' con-
formation and the ¢4 helix is formed within the active site
loop. In the remaining subunit (chain F) Arg 27 is in an
'open' conformation and the bound water close to OG6 is
absent.

Enzyme Kinetics

Kinetic data for P/PNP and PvPNP are summarised and
compared with existing published data [8,21-25] in Addi-
tional File 1. These data are similar to those previously
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Structure of Pf PNP-HRA complex. (a) active site of typical subunit (b) active site of subunit F (c) corresponding electron
density (2F,ps-F,, contoured at | sigma) for the 'in' and 'out’ modes of Arg 27 respectively. Hydrogen bonds are shown as
blue dashed lines with distances in Angstroms, and bound water molecules are shown as red spheres.
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reported for PPNP [8,22] with the exception that PuPNP,
unusually, appears to be activated by the 2'-deoxyinosine
substrate as discussed below. This increase in rate was con-
sistently observed with both different batches of PvPNP
and altered concentrations of the linked enzyme, xan-
thine oxidase, and hence appears to be an inherent char-
acteristic of PuPNP with 2'-deoxyinosine. The Plasmodium
PNPs are seen to display slightly better catalytic efficiency
for guanosine than inosine, consistent with previous
reports.

Discussion

Reconciliation of structures derived from the arsenolytic
reaction of PNP with the mechanism of phosphorolysis is
complicated primarily by the spontaneous breakdown of
the ribose-1-arsenate product. This leads, in this study, to
a complex that contains a mixture of products (hypoxan-
thine), a (non-enzymatic) degradation product of the real
product ribose-1-arsenate (ribose) and reactants (arse-
nate). The relative placement of these groups within the
active site differs from previous structures of PNP com-
plexes containing products, reactants or inhibitors.

Two different forms of the active site are observed in the
PfPNP-HRA complex. These are distinguished by the con-
formation of the active site loop, and the positioning of
the side chain of Arg 27. Conformational changes in the
active site loop have previously been reported as a distin-
guishing structural feature between the ground-state (e.g.
PfPNP-SO4 or PfPNP-ino, loop disordered) and catalytic-
state (P/PNP-Imm, loop forms a short helix) of PfPNP
[6,9]. In the P/PNP-HRA complex, although all active sites
are occupied, in four subunits (A,B,D,E) the active site
loop is ordered - indicative of a catalytically-active form -
whereas its disorder in subunits C and F may reflect the
start of a transition in which the enzyme adopts a 'relaxed
state' to release the products of arsenolysis. This is sup-
ported by the conformation of the Arg 27 side chain
which points away from the active site in chain F, in con-
trast to Chain C and the other chains where this side chain
participates in binding the arsenate group (Figure 4). This
has not been observed previously in PfPNP-Imm struc-
tures (co-crystallised with SO,, [6]) although conforma-
tional alteration of an equivalent arginine side chain has
previously been noted to correlate with enzymatic activity
in EcPNP where the 'open' position of the arginine side
chain has been correlated with the enzyme in a non-cata-
lytic state [16,19]. In the ECPNP enzyme the two confor-
mations were also proposed as an explanation for the two
different phosphate affinities observed [16].

Another feature of the PfPNP-HRA active site that pro-
vides some insight into the mechanistic state reflected by
the complex is the binding of Asp 206 directly to the N7
of the base, an arrangement consistent with its proposed
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role as the general acid/base for protonation of N7 of the
substrate in the transition state [14,6,9,16]. It has been
suggested that this carboxylate-base interaction is exclu-
sive to the catalytic state structure, and is unlikely to play
an important role in initial substrate binding [9]. By this
criterion the conformation of Asp 206 observed in the
present structure implies that this structure of PfPNP rep-
resents the enzyme in a catalytic state. This is further sup-
ported by the observation of a bound water molecule
close to O6 of the purine base, which is present in all sub-
units with Arg 27 in the 'closed' conformation. This is sim-
ilar to the reported structure for ECPNP where the presence
and absence of the equivalent water molecule correlates
with the two states for the active site loop, and has lead to
the suggestion that the water molecule might act as a
lubricant for the folding and unfolding of the helix in the
active site loop [16].

Together, these indicators are all consistent with five sub-
units of the PfPNP-HRA complex representing an active
conformation of the enzyme in an intermediate state
structure. In contrast, the remaining subunit (chain F)
may represent the structure of the enzyme in a non inter-
mediate state or, speculatively, a state prior to release of
the products.

Mechanism of Plasmodium PNPs

The catalytic mechanism of PNP enzymes has been dis-
sected in detail in many previous studies. Nevertheless,
the PfPNP-HRA complex in this study provides an inter-
esting addition to the many crystallographic observations
that support a mechanism elucidated primarily by KIE
studies. Firstly, arsenate is chemically and physically more
similar to phosphate than is sulphate, which has been
used extensively in many of the previous PNP crystal
structures. Secondly, to form the oxocarbenium ion tran-
sition state the C1' atom of the ribose ring is required to
move away from the base by about 0.3-0.4 A [17] and
then further towards the phosphate ion to form partial
bonds to both the purine and the phosphate, a position
known as the point of atomic symmetry in the reaction
coordinate of PNP, and which is energetically similar to
the complex with bound products [5]. At this point the
C1' atom lies equidistant between the N9 of the base and
the incoming phosphate/arsenate oxygen nucleophile.
This condition is close to being satisfied in the crystal
structure of the P/PNP-HRA complex, with average separa-
tions of As-O1 U C1' of 2.4 A, and C1' U N9 of 2.7 A. By
contrast, the equivalent distances in the PfPNP-ImmH
complex are 3.4 A and 1.6 A respectively, and 3.6 A and
1.5 A in the PfPNP-ino and PfPNP-SO, complexes (see
Figure 5, which is similar to previous figures such as in
[5,26,27]). The ribose C3' atom is seen to adopt an exo
conformation, consistent with the observation for the
conformation of iminoribitol group of immucillin H in

Page 10 of 18

(page number not for citation purposes)



BMC Structural Biology 2009, 9:42

90°

B

Immucillin vs

A

Michaelis complex

Michaelis complex

———
} 1.5 A
4 - —
] 3.8 A
...... > =
°";€G E=53A \

Figure 5

http://www.biomedcentral.com/1472-6807/9/42

c Ve

Atomic symmetry point

transition state vs

immucillin

{ ”””” T 27A
N 2.4 A)
-

2.3 A
(2.4 A)

I=5.0A

Movement of the CI' of the ribose ring throughout catalysis by pPNP. Top figure shows two perpendicular views of
an overlay of the ribose and surrounding atoms in PfPNP-inosine/PfPNP-SO, (Michaelis complex, green), PfPNP-ImmH (transi-
tion state, purple) and PfPNP-hypoxanthine-ribose-AsO, complex (post-transition state, yellow) structures. Bottom panel
show the distances between CI'-N9 and Cl'-nucleophilic oxygen when comparing ligands in different states with the sum of
the reaction coordinate distance (X) shown. The numbers in brackets are the values proposed by KIE calculations between the
Michaelis complex and transition state [17] or those observed in bPNP crystal structures representing the transition state and
post-transition state [5]. This figure is similar to those compiled previously for other PNP combinations such as in [5,26,27].

the PfPNP-ImmH structure (3), and has an O5'-C5'-C4'-
C3' dihedral angle of 174°. This differs from an earlier
suggestion from KIE studies that a C3'-endo conformation
might be adopted during catalysis (4). The proximity of
the C1' atom to the nucleophile is consistent with a post-
transition state arrangement. By contrast, Pf/PNP-ino and
PfPNP-ImmH complexes are pre-transition state and
(close to) transition state conformations respectively. In
combination, the series of PfPNP structures shown in Fig-
ure 5 provides a neat series of snapshots illustrating clearly
the movement of the C1' atom of the ribose group
throughout the phosphorolysis mechanism in PfPNP.

Further examination of the association of the ligands with
PfPNP also suggests the active site arrangement of the

complex may be closer to an intermediate state rather
than a straightforward product complex. Firstly, the AsO,
U C1' distance is longer and the C1' U N9 distance is
shorter than those previously described for true product
complexes of mammalian PNPs (1.5 A and 3.8 A, respec-
tively [28]). Further, by comparison with PNP complexes
with sulphate or phosphate, the arsenate oxygen is tilted
towards the ribose ring oxygen (AsO, U O4'=3.2 A) ina
similar arrangement to that seen in the ImmH structure
(PO, U N4' = 3.3 A). This arrangement in ImmH is
believed to reflect partial charge on the iminoribitol ring
indicative of ribo-oxocarbenium ion character [5]. In
addition, the N9 to O, distance of the bound SO, is 4.7 A
in the PfPNP-ImmH complex, and 4.8 A in the PfPNP-
HRA complex (AsO,). Closer distances in these complexes
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are generally believed to indicate more transition-like
character, representative of transition state formation with
significant bond order to leaving and/or attacking groups.
Finally, the involvement of Arg 27 in the PfPNP-HRA
complex distinguishes this conformation from that previ-
ously described for the PfPNP-ImmH transition-state
complex.

Previous studies [16,19] have suggested that Arg 27 not
only enhances the affinity of binding of the phosphate
group, but also participates in catalysis by stabilising the
negative charge of the anion. However, the role of Arg 27
may be more complex. Erion et al. [20] proposed that a
basic residue in this location at this position may be
involved in preparation of a catalytically active anion con-
taining nucleophilic oxygen, by demonstrating an impor-
tant role for the His 86 residue found in this location in
human PNP. This histidine is believed to deprotonate the
anion, hence generating the required catalytically pre-
ferred ionic state and strengthening the negative charge of
the bound phosphate/arsenate anion [29]. Of the three
arginines within the active sites of pPNPs, since the immo-
bile Arg 88 and Arg 45' participate in the binding site in
both the ground and intermediate states, it appears that
Arg 27 may fulfil a similar role to His 86 in the human
enzyme, helping to stabilise a negative charge on the
phosphate anion and hence leading to activation of the
nucleophile in the intermediate state. In the P/PNP-HRA
complex, Arg 27 forms bifurcated hydrogen bonds (aver-
age distance 2.7 A) directly with two of the oxygens of the
bound arsenate, consistent with this proposed role. This
interaction is absent in the PfPNP-ImmH structure, in
which the arginine side chain is turned away from the
bound sulphate, as also seen in one of the subunits (F) in
the P/PNP-HRA complex.

In discussion of the role of a similar arginine (Arg 24) in
EcPNP, [16] proposed that its structural rearrangement is
induced by a tight-binding enzyme conformation, in
which a neighbouring continuous helix is broken into two
parts, one of which moves in the direction of Arg 24. This
helix brings Arg 217 close to Arg 24, permitting the forma-
tion of a hydrogen bond between Arg 24 N, -and the - Arg
217 main chain oxygen. This structural rearrangement is
not the case for PfPNP; nonetheless, stabilisation of Arg
27 is still observed but must result from a different mech-
anism. We note that the N, atom of Arg 27 is instead sur-
rounded by several water molecules forming bridging
interactions between this N, atom and the O atom of Asn
219 and Og,atom of Asp 24. As phosphate and arsenate
ions are similar in size and - under the crystal conditions
- charged, binding of both molecules to the protein is
likely to follow the same scheme.

http://www.biomedcentral.com/1472-6807/9/42

As the composition of the active sites is identical between
the PvPNP and PfPNP structures, it appears reasonable to
conclude that both enzymes use the same residues and
have the same catalytic mechanism. Fusing a multitude of
previous mechanistic studies of other PNPs with the vari-
ous Plasmodium PNP crystal structures enables a generic
mechanism for the Plasmodium enzymes to be summa-
rised (Figure 6). This differs from the mammalian
(trimeric) PNP mechanism primarily in the identity and
contributions of several of the key catalytic amino acids.
These include the anion binding site which is formed
from three arginine residues in pPNPs, whereas from one
arginine and one histidine in hPNP; the proton-donating
residue is Asp 206 in pPNP and Asn 243 in hPNP; residues
in the ribose binding pocket also differ particularly a
charged Glu 184 in pPNP relative to the hydrophobic Tyr
88 in hPNP, and in pPNP there are cavities adjacent to the
O5' of the ribose and N1 and C2 of the base, which are
filled by hydrophobic residues for the former and Glu 201
for the latter in hPNP (Figure 7). These accumulated dif-
ferences suggest that selectivity for the Plasmodium forms
should be achievable in the design of PNP inhibitors. This
has already been shown with the ImmH series of inhibi-
tors where the derivative MT-ImmH has been reported to
bind to PfPNP over 100 fold tighter than to human PNP

[6].

Substrate activation in PvPNP

Phosphorolysis of most nucleoside substrates by PfPNP
and PvPNP in this study followed the typical mechanism
described by the Michaelis-Menten equation - i.e. double
reciprocal plots of 1/v versus 1/[S] produce linear relation-
ships (data not shown). However, this was not the case for
the reaction of PvPNP with 2'-deoxyinosine. Although 2'-
deoxyinosine is unlikely to be a biologically-relevant sub-
strate for Plasmodium PNP, it is similar to some of the
developed PNP inhibitors such as 2'-deoxy immucillin-H
and G. Substrate inhibition was first considered as an
explanation for the non-linearity of the reciprocal plot for
this substrate, but the data fitted poorly to the Michaelis-
Menten equation corrected for substrate inhibition (v, =
Vinax ¥ [S]/(Kyu+ [S]*(1+ [S]/K;)) (Figure 8). Plots of v, ver-
sus log [S] (data not shown) also confirmed that curvature
was not symmetrically bell-shaped, which is typical for
substrate inhibition cases [30].

There have been previous reports of substrate activation of
the trimeric hPNP with specific nucleoside substrates
[31,32]. The data for PvPNP with 2'-deoxyinosine were
therefore fitted to a derived substrate activation equation
following the rapid equilibrium method described by [30]
and showed an improved fit (Figure 8A) leading to calcu-
lation of the kinetic parameters shown in Additional File
1. It was also noted that a reciprocal plot of 1/v versus 1/
[S] is linear over the low substrate concentration range but
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Figure 6

Catalytic mechanism of Plasmodium PNP. Schematic diagram showing the proposed generic Plasmodium PNP reaction
mechanism, which is based on that initially proposed for EcPNP [19]. Note that Asp 206 must be in its acidic form prior to pro-
tonation. The dotted lines indicate electrostatic interactions, dashed lines are hydrogen bonds and 'w' indicates water mole-

cules. Panel (1) is the binding state, (2) is the pre-catalytic state, (3) is the intermediate state, and (4) is the pre-leaving state.
See text for details of each step.
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hPNP

Substrate placement and binding pocket in the Plasmodium and human PNP enzymes. The schematic diagrams
represent the human and parasite forms of the enzyme at the catalytic state. The diagram for Plasmodium parasite enzymes
(left) is based on the arsenolytic-intermediate-state PfPNP and the sulphate-bound PvPNP structures, with the residues num-
bered according to the P. falciparum enzyme (+1 for PvPNP), while that for human PNP (right) is based on the transition-state-
analogue complexes (PDB ID: 1RR6, [6]) and refined atomic coordinates [20]. Amino acids lining the active sites are repre-
sented by spheres, coloured grey for non-polar, green for uncharged polar, blue for positively charged and red for negatively
charged amino acids with bound water molecules shown as dark blue spheres. Note residues labelled 'a’ are from the parent
subunit, while those labelled 'b' from the neighbouring subunit in a dimer pair.

turns upwardly concave over a high substrate concentra-
tion range (Figure 8B). Frieden et al [30] noted that for
substrate activation cases this curvature is normally down-
ward, although PvPNP with the 2'-deoxyinosine substrate
appears to be an interesting form which has also been
found in threonine dehydrase [33] and can nevertheless
be classified as a substrate activation phenomenon. This
distinguishes substrate activation in PvPNP with 2'-deox-
yinosine from other examples of substrate activation
reported for other PNP enzymes [31,32] which conform
to the classical substrate activation model. Application of
the Hill equation to the first portion of the PvPNP-2'-
deoxyinosine data confirmed the existence of positive co-
operativity (Hill coefficient of 1.9, data not shown), con-
sistent with the notion of substrate activation of PvPNP by
2'-deoxyinosine, a property not shared by PfPNP despite
the high overall structural similarity. However, the mech-
anism of substrate activation in PNP enzymes, particularly
the unusual form observed here for PUPNP, is not evident
from the crystal structure. For the other substrates, the 2'
hydroxyl group forms a hydrogen bond (2.5 A) with Glu
184. The absence of this interaction when 2'-deoxyinosine
is used as substrate might facilitate positioning rearrange-
ments between the ribose and phosphate, hence explain-

ing the increased k_,rate. Nonetheless, there is no obvious
explanation in the structures as to why this capacity might
vary between the PfPNP and PuvPNP enzymes, the former
not displaying substrate activation.

It is also worth noting that despite strict conservation of
the active site composition and structure between the
PfPNP and PvPNP enzymes small variations in their enzy-
matic activities are observed. These might arise through
indirect effects from amino acid changes peripheral to the
active site region, as has recently been described for mam-
malian PNPs [34,35]. In the assembled dimers of Plasmo-
dium PNPs the amino terminus of each neighbouring
subunit is located close to the adjacent subunit nucleoside
binding site. This region has the greatest number of amino
acid differences between the two Plasmodium enzymes,
including a number of charge changes. These substitu-
tions may induce electrostatic changes in the enzyme
leading to alterations of the pKa values for the active site
histidines (His 7 in PfPNP or His 8 in PvPNP), a mecha-
nism that has previously been demonstrated, for example,
to explain the differential activities of isoforms of human
lactate dehydrogenase despite their identical active sites
[36].
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Fitting of initial velocities to different kinetic treatment methods for catalysis of 2'-deoxyinosine by PvPNP. The
left (A) shows that application of the substrate activation equation (equation 2 in the text), v = (Vi '[S) + (Vinaxa' [SI#/Km2))/
(Km, + [S] + ([S]¥Kmy)), (=) matches the experimental data better than does the theoretical curve from the substrate inhibition
equation (---). The reciprocal plot, 1/v versus 1/[S], with ordinates divided by a factor of 500 (right, B) illustrate the upward cur-
vature at high substrate concentration range, which is similar to an example of a substrate activation case given by [30].

Conclusion

As expected from sequence homology comparisons, the
overall structure and active site of PvPNP is very similar to
those previously described for PfPNP. However, these
structures both differ from the crystal structure of PkPNP
in which, despite overall conservation of most active site
amino acids, a considerably different active site arrange-
ment is observed. This appears to arise from the extended
159-170 loop in PkPNP which protrudes at the dimer
interface, changing the subunit association in the dimer
and hexamer and, in turn, the binding pocket. It is diffi-
cult to conceive, however, that the site could accommo-
date substrates in this form which may represent an
inactive form of the enzyme. The comparability of the
PfPNP and PvPNP structures provides confirmation that
these are likely to reflect the archetypal Plasmodium forms
of the enzyme. The close structural coincidence of their
active sites, and their similar overall kinetic profiles, sug-
gest that inhibitors targeting one form of this enzyme are
very likely to also prove effective against the other. The key
features of these sites are summarised in the proposed
generic Plasmodium PNP mechanism shown in Figure 6
and in the schematic in Figure 7.

Although correlation of the active site details of the
PfPNP-HRA complex with the expected mechanism is not
straightforward, several characteristics suggest the com-
plex is more indicative of a post-transition intermediate
conformation along the reaction coordinate rather than a
true product complex. In particular, the ribose C1' is
located close to equidistant between the base N9 and arse-
nate O1, unlike in previous complexes of PfPNP. In this
respect the PfPNP-HRA complex is likely to form a good
representation of the point of atomic symmetry along the
reaction coordinate, and as such may provide a valuable
addition to structure-based design efforts.

Despite the remarkably close similarity between PfPNP
and PvPNP, the response of each enzyme to the 2'-deoxyi-
nosine substrate is differentiated by the observation of an
unusual form of substrate activation in PvPNP. Although
the mechanism by which this arises is currently unclear,
this observation demonstrates that even virtually indistin-
guishable active sites can respond differently to some sub-
strates — possibly because of electrostatic effects from
peripheral regions. Inhibitors that resemble 2'-deoxyinos-
ine might therefore prove less effective against PvPNP.
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Subtle differences such as this may need to be considered
during enzyme inhibitor development.

Methods

Preparation of recombinant Plasmodium PNPs - cloning,
expression, purification

The gene for PfPNP was exponentially amplified by PCR
from genomic DNA and inserted into the pET28a expres-
sion vector (Novagen) using procedures essentially as pre-
viously described by [9]. Amplification of the PvPNP gene
was performed using the same method with the specific
primers: - sense: 5'-TCATCCATGGAAGGCGAAATGCA-
GAGGC-3', and antisense: 5'-CACACTCGAGGTACTTCT-
TCGCCAATCGGGC-3'. The resulting gene fragment was
inserted into the same expression plasmid using the Ncol
and Xhol restriction sites. Both plasmids were transformed
into E. coli strain BL21 (DE3) cells (Novagen) for expres-
sion. Over-expressed proteins were isolated by nickel
affinity chromatography followed by gel filtration using
Superdex™ 75 in 150 mM NaCl, 50 mM HEPES, pH 7.5.
Protein fractions (>95% purity determined by SDS-PAGE
analysis) were concentrated to 10 mg/ml using Vivaspin
concentrators (Vivascience) in 100 mM NaCl, 100 mM
HEPES, pH 7.5.

Crystallisation and structure determination of PvPNP and
the PfPNP-complex

Crystallisation of both PNP enzymes was achieved by
vapour diffusion, with conditions established by sparse
matrix crystallisation screens, Crystal Screen1™ and Crys-
tal Screen2™ (Hampton Research). Viable crystals of
PvPNP could only be obtained in the absence of nucleo-
sides. The optimised conditions for crystal growth were 5
mg/ml (0.18 mM) PuPNP, 18% PEG 4 K, 0.2 M LiSO,,
and 0.1 M Tris-HCI, pH 8.5. Crystals of the P/PNP-hypox-
anthine-ribose-arsenate (PfPNP-HRA) complex were
obtained by pre-incubating10 mg/ml (0.37 mM) PfPNP,
5 mM inosine, and 0.1 M arsenic acid, followed by crystal-
lisation using 4.0 M sodium formate (adjusted to neutral
pH) as precipitant.

Diffraction data were collected at the Daresbury SRS syn-
chrotron, station MAD10.1, using monochromatic radia-
tion at wavelengths 1.0745 A and 1.196 A respectively for
PvPNP and the PfPNP complex. Data were processed
using the HKL2000 suite [37] and are summarized in
Table 1. Both structures were solved by molecular replace-
ment using the Phaser program [38] in the CCP4 suite
[39]. Search models were (1) a monomer of the PkPNP
crystal structure (PDB: 2B94) and (2) a monomer (chain
A) of the PfPNP-ImmH complex crystal structure (PDB:
1NW4, [6]), in each case with ligands and solvent mole-
cules removed. The resulting structure solutions were
refined using REFMAC5 [39] with manual rebuilding in
COOT [40]. For the P/PNP complex, TLS refinement was
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introduced at the very last refinement step using a tls ten-
sor file calculated from the program TLSMD [41]. Com-
pleted structures were verified for geometric correctness
with MolProbity [42] and SFCHECK [43]. Refinement sta-
tistics are also summarized in Table 1.

Coordinates and structure factors have been deposited in
the Protein Data Bank (accession codes: PvPNP-SO,:
[PDB:3EMV]; PfPNP-HRA complex: [PDB:3ENZ]).

Enzymatic properties of PvPNP compared with PfPNP
Kinetic assays of the Plasmodium PNPs with various sub-
strates were based on the forward reaction, in which phos-
phorolysis of the substrates was catalysed by the enzyme
in the presence of phosphate, using a coupled reaction
with xanthine oxidase and conditions as described previ-
ously [9]. The concentration of desalted xanthine oxidase
(Sigma) for the coupled reaction in the inosine and 2'-
deoxyinosine assays was 90 mill-units/ml, and substrates
were included in the following range of concentrations:
inosine (Calbiochem) 0.75 - 3000 uM, 2'-deoxyinosine
(Biochemika) 0.75 - 3000 uM, guanosine (Sigma) 0.39-
150 uM, 2'-deoxyguanosine (Sigma) 1.71-200 pM and 2-
amino-6-mercapto-7-methylpurine riboside (MESG, a
component of EnzCheck Phophate Assay Kit, Molecular
Probes, Invitrogen) 0.5-500 pM. Measured initial rates
were fitted to the classic Michaelis-Menten equation and
used for calculation of K, k,, and k_,,/K}, with appropri-
ate corrections made for background rates, using the non-
linear regression facility in the GraphPad Prism software
(GraphPad Software, Inc., San Diego, USA). For analysis
of the substrate activated form of PvPNP with 2'-deoxyi-
nosine (see discussion), the binding sequence could be
described as:

Ky Iy

E+S [ES]

E+P

Kwmo

k
[SES|=————=E+P
where E = enzyme, S = substrate and the rate of the reac-

tion is:

v k1-[ES]+ko[SES] 1)
Eo  [E]+[ES]+[SES]

and the Michaelis constants, K,,, can be approximated as:

~ w and K
[ES]

_[ESHS]

M1 [SES]

M2

To simplify the equation for the analysis software, equa-
tion 1 was divided by [E]/[E]:
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vo_ " [E] [E]
Bo 1, [ESI, ISES]
[E]  [E]

And substituting the expressions for the Michaelis con-
stants gives:

2
- [S] ko [S]
v _ ~ Kmi Kmi1 -Km2
L O I S
Km1 KM1-Km2

This was then multiplied by K,,,/K},; and by E:

sI>
Eq-k1-[S]+Eq-k2 TM

[s]?
Km2

V=

Km1+S]+

as V..= k- Ey, equation 2 can be derived and to which the
data were fitted:

[s]?
Vmax1[SI+Vmax2 Knin
v= M2 (2)
[s]2
Km2

Km1+S]+
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