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Abstract

Background: DNA replication and cell cycle as well as their relationship have been extensively
studied in the two model organisms E. coli and B. subtilis. By contrast, little is known about these
processes in cyanobacteria, even though they are crucial to the biosphere, in utilizing solar energy
to renew the oxygenic atmosphere and in producing the biomass for the food chain. Recent studies
have allowed the identification of several cell division factors that are specifics to cyanobacteria.
Among them, Ftné has been proposed to function in the recruitment of the crucial FtsZ proteins
to the septum or the subsequent Z-ring assembly and possibly in chromosome segregation.

Results: In this study, we identified an as yet undescribed domain located in the conserved N-
terminal region of Ftn6. This 77 amino-acids-long domain, designated here as FND (Ftné N-
Terminal Domain), exhibits striking sequence and structural similarities with the DNA-interacting
module, listed in the PFAM database as the DnaD-like domain (pfam04271). We took advantage of
the sequence similarities between FND and the DnaD-like domains to construct a homology 3D-
model of the Ftn6 FND domain from the model cyanobacterium Synechocystis PCC6803. Mapping
of the conserved residues exposed onto the FND surface allowed us to identify a highly conserved
area that could be engaged in Ftné-specific interactions.

Conclusion: Overall, similarities between FND and DnaD-like domains as well as previously
reported observations on Ftné suggest that FND may function as a DNA-interacting module
thereby providing an as yet missing link between DNA replication and cell division in cyanobacteria.
Consistently, we also showed that Ftné is involved in tolerance to DNA damages generated by UV
rays.

Background The DNA replication cycle can be divided into three dis-
DNA replication and cell division are probably the most  tinct stages; initiation, elongation, and termination. Rep-
fundamental processes in the cell life cycle. Both proceed  lication is initiated by the highly conserved AAA+
through a remarkably conserved general mechanism and  superfamily ATPase-member DnaA that binds the oriC,
are inextricably intertwined to each others and to the cell ~ inducing DNA strand melting [2-4]. In E. coli, DnaA also
metabolism [1]. interacts with the ring helicase DnaB and directs the load-

Page 1 of 7

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19698108
http://www.biomedcentral.com/1472-6807/9/54
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Structural Biology 2009, 9:54

ing of DnaB/DnaC onto the single stranded DNA
(ssDNA) region. After binding of DnaB on the ssDNA
region of the oriC, DnaC is released in an ATPase depend-
ent manner. Then, DnaB recruits the DnaG primase and
DNA polymerase III to form the replication fork [4]. In B.
subtilis, two additional essential proteins, called DnaB (be
aware of the confusing nomenclature between the E. coli
and B. subtilis) and DnaD, are engaged in entry of the ring
helicase at oriC. DnaB could function as a membrane
anchoring factor for the replication initiation machinery
[5] or, together with Dnal, the functional homolog of E.
coli DnaC [6], in the recruitment of the ring helicase [7].
DnaD interacts with both DnaA and DnaB [8,9]. It exhib-
its DNA remodelling activity, enhancing partial melting of
the DNA strands, and could, therefore, function in early
steps of replication such as initiating the recruitment of
the ring helicase [9-15]. During elongation, the replica-
tion forks constituted at the oriC travel in opposite direc-
tions to achieve replication of the entire chromosome.
When the replication forks reach the terminus, terC, the
replication complexes are dismantled in a process involv-
ing specific termination factors [16].

The earliest event in bacterial cytokinesis is the definition
of the future cell division site. This occurs through the
dynamic assembly/disassembly of the Z-ring structure
resulting from the self-polymerization of the ubiquitous
tubulin-like protein FtsZ [17,18]. Placement of the Z-ring
is mainly dependent on the Min system both in E. coli and
in B. subtilis [17,18]. Once assembled, the Z-ring is
believed to serve as a scaffold for recruitment of the cell
division machinery to activate septation and physical sep-
aration of the daughter cells. In contrast to the model
organisms E. coli and in B. subtilis, the molecular basis of
cell division has not been as well studied in cyanobacteria.
Nevertheless, studies with the two unicellular cyanobacte-
ria Synechocystis PCC6803 and Synechococcus PCC7942
and the filamentous Anabaena PCC7120, have allowed
the identification and the characterisation of clear Fts and
Min orthologs as well as ZipN/Ftn2 and Ftn6, two cell
division factors restricted to cyanobacteria [19-21].
Although ftn6 deletion leads to cell division defects,
resulting in cells dramatically elongated in Synechococcus
PCC7942 or enlarged in Anabaena PCC7120 [19,21], the
molecular function of Ftn6 remains unclear. Nevertheless,
recent data suggest an involvement of Ftn6 in recruitment
of FtsZ proteins to the septum or subsequent Z-ring
assembly, as cells deleted for ftin6 do not exhibit con-
densed Z-rings, but rather diffuse localization of FtsZ [21].

Based on sequence and structure analyses, we here pro-
pose that the cyanobacterial-specific cell division factor
Ftn6 contains a not hitherto described N-terminal
domain related to the DnaD-like domain found in the
DnaD chromosomal replication protein family. Identifi-
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cation of the Ftn6 N-terminal Domain, we termed FND
(Ftn6 N-terminal Domain), opens up very interesting per-
spectives about Ftn6 function in cell division and possibly
in chromosome segregation as well as on their necessary
interplay. Consistently, we also showed that Ftn6-
depleted cells are sensitive to DNA damages generated by
UV rays.

Results and discussion

Ftné orthologs contain a conserved N-terminus domain
(FND)

To identify putative Ftn6 motifs amenable for functional
analysis, we performed database searches using the Syne-
chocystis PCC6803 Ftn6 protein sequence (Syn6803) as
query. BLAST search of the NCBI-database allowed the
identification of 27 Ftn6 orthologs, all belonging to the
cyanobacteria phylum. No ortholog was found in plastids
or other prokaryotes. Interestingly, Ftn6 orthologs were
found in all Nostocales (5 out of 5), Oscillatoriales (4/4)
and Gloeobacterales (1/1), in some Chroococcales (17/
29), but not in Prochlorales (0/13) even in those whose
genome is fully sequenced. This finding, along with the
viability of ftn6-depleted mutants [19,21], suggests that
other cell division factors functionally overlap with Ftn6
in cytokinesis. Alignment of all Ftn6 amino-acids
sequences identified by BLAST (Additional file 1) revealed
a single conserved region encompassed within the first 90
first amino-acids of Syn6803 Ftn6 (Figure 1). This 77
amino-acids-long domain (L4 to Ly, in Syn6803 Ftn6),
termed here FND for Ftn6 N-terminal Domain, is bipartite
with the first 28 amino-acids (L, to L,5) poorly conserved
and the 49 remaining ones (W, to Ly,) characterized by
the W-X;-A-X,-E-X,-G-R-Y-X;-8-X,,-L-X,-W consensus (Fig-
ure 1). The high degree of conservation of FND in Ftn6
orthologs suggests that this domain plays an important
part of the function(s) of Ftn6 in cell division.

FND is related to the DnaD-like domain

Interrogation of protein domain databases did not allow
identification of any FND-related domain (data not
shown). Conversely, PSI-BLAST searches of the NCBI non-
redundant database using the Syn6803 FND sequence as
query identified significant hits for the alignment of this
sequence with its orthologs and, interestingly, with mem-
bers of the DnaD protein family. DnaD sequences that
were reported from the 3th PSI-BLAST iteration share low,
typically less than 20% identity, but significant similari-
ties with Ftn6 orthologs (Figure 2). For instance, the Psi-
BLAST returned alignments with highly significant E-val-
ues between Syn6803 FND and several members of the
DnaD-like family (Geobacillus sp., Gen-
Bank:ZP_03559496, E-value 8e-15; Lactobacillus hilgardii,
GenBank:ZP_03954546, E-value 1e-13; Clostridium beijer-
inckii, GenBank:YP_001308753, E-value 1e-10; Streptococ-
cus mutans, GenBank: 2ZC2_A, E-value 4e-08 or Bacillus
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Syn6803 1
Cya7424 1
Cya7425 1
Cya7822 1
Cya51142 1
Cya8802 1
Mic843 1
Cro8501 1
Thel 1
Syn33Ab 1 —-
Syn23Ba 1
Syn7942 1
Syn7335 1
Syn7002 1
Ana29413
Nos0708
Nos73102
Nod9414 1
Art328 1
Mic7420 1
TrilOl 1
Lyn8106 1
AcallOl7 1
Glo7421 1

Consensus 100%

Figure |
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Multiple sequence alignment of the N-terminal domain of Ftné orthologs. BoxShade representation of the multiple
alignment of the N-terminal domain of Ftné orthologs built with ClustalW2. Organisms, accession numbers and characteristics
of the Ftné sequences shown in the alignment are given in the additional file |. The starting residues are reported at the front
of the corresponding sequence. Amino acids identical or similar in 70% of the sequences are shaded by black or grey back-
ground, respectively. The consensus in 100% of the sequences is indicated below the alignment. Stars point out the conserved
residues exposed onto the surface of the FND structure (see text).

subtilis, GenBank:ABN10247, E-value 3e-08;...). DnaD
consists of two domains with distinct biochemical prop-
erties [14]. The N-terminal Domain is involved in the oli-
gomerization of the protein and interactions with DnaA,
while the C-terminus, listed in the PFAM database as the
DnaD-like domain (pfam04271), binds DNA [8,14]. Very
interestingly, the sequence similarity we observed
between the Ftn6 orthologs and the DnaD family is
restricted to the DnaD-like domain (Figure 2), suggesting
a DNA-binding activity for FND.

Modelling FND

The belonging of FND to the DnaD-like domain family
was further supported by fold recognition techniques.
Indeed, submission of each FND domains to the PHYRE
server constantly returned the two DnaD structures cur-
rently deposited in PDB as best hits, i.e. the DnaD-like
domain of the replication proteins from Streptococcus
mutans (PDB: 2ZC2) and from Enterococcus faecalis (PDB:
2I5U). DnaD-like domains reported from the PHYRE
search share low but noticeable similarities with all FND
tested (data not shown), suggesting structural similarities
between FND and the DnaD-like domain. Then, Strepto-
coccus mutans DnaD-like domain has been included in the
alignment shown in Figure 2. As expected for proteins
sharing a low level of sequence identity, we noticed that
the nature of the hydrophobic residues conserved in
DnaD-like domains (noted by red dots below the WebL-

ogo profile [22] shown in the additional file 2 and shaded
in pink background in Figure 2) was not preserved in FND
(shaded by light green background in Figure 2). By con-
trast, their positions were highly conserved. The high
degree of conservation (80%; 16 aminoacids residues out
of 20; compare positions shaded in pink and green in the
bottom of Figure 2) of the hydrophobic pattern between
FND and DnaD-like domain strongly argues in favour of
a similar fold. This is particularly evident for the helices 3
and 4, in which the hydrophobic pattern is not only con-
served in position (83%; 10 out of 12), but is also highly
similar, particularly the two alanines of the third helix
(Asp and Ag, in Syn6803 FND) and the leucine and the
tyrosine (Lo and W, respectively) at the extreme C-termi-
nus of the fourth helix (Figure 2).

Based on these results and the alignment shown in Figure
2, we constructed a homology 3D-model of Syn6803 FND
with  MODELLER [23] Normalized DOPE z-score: -
0.533). Overall model quality assessed by ProSA-Web
returned a Z-Score of -4.12, which is in agreement with
the Z-Scores of all experimentally determined chains cur-
rently deposited in the PDB database. Most of the hydro-
phobic positions of FND conserved in the DnaD-like
domain (Figure 2 and additional file 2) are buried within
the structure (Figure 3A), emphasizing their importance
for structure stability and/or folding. Note that two hydro-
phobic positions conserved in DnaD-like domains (noted
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KGQPNFHFSAEFERLVSENLPR
AROOMTCHFTHEFERLICRNLIK
AREQMTSHF SHEFERLICRNLLE
SRGHP TFHF TGEFERLVCKNLLD
SRGHPTFHFTGEFERLVCKNLPD
ALGOPTYHFTHEFERFITGNLLI
ALGHPTYHFTYEFERFITRNLEFF
SRSRVIFHFNHEFERLICRHLLL
SRDOATYHFNMEFERMICSKEPQ
HRGOVIYHFNMEFERLICSKFPE
ARGQEIYHFNMEFERLICSKFPE
ARNQP IYHFNSEFERLICNKLPH
ARGOPIYHFNSEFQNIITRNVIT
HRGKP IYHFNWEFEQLICKNLPK
AREQPIYHFNSEFEATICQSLPL
ARGOPSYHFNNEFERLVCYNLPK
AREQPIYRFNHEFERLICRKLPQ
AWEKPQVQFNREFESLICAELPT
SRGAPHLTFPPEISQSLWREQQE
SRGSPHLTFPPEIGQFLWQEQQE
HRGOINCHFSADYERLLLGEVPE
AKGQPLYHFNREFEALICHKEFPQ
SRGOPVRHATHEFEAAICREFGE Ftne
FRGOPRLSFDREFQRLVLKEVWQ
EKGYRTVDEVRAARLAFREQRMK DnaD
SGGIDEPWKEEQHEESGGRSKGS
KQLKTMADIASDQMRFHAQKKK

HAKNITTKEQVAADQKKRKDSMIQ

INNVKTIDDSRKIREKENKPKMT

OGVKTTEDAKRVAEEFHQNGRT
JKNTRTKDQVDKEATRRRQGNSK
EGIVNLRQVEERRRVREGEDLS
#DQTKTPAQAQIAKQKRRGVTYT
SNNIKTIEEVNNFEEQMKKKKTA

INGVTTLDQAKKYGEKFRTRQDN
JKGTHSVQDARKASQPFHQNQQS

AnoWK1 169 YT NGIKTIEQAQQHAKKFRKNQVK
Mo039073 140 YRT JHNIRTVAQAIDHDEQKNKRKIR
MacJCSC5402 119 FE KNVKSVADSKEVSKQFKQKNLV
Bacsub 127 KS@YTI NGLKTVEQAKTHSQKFRRVQA-
StrUA159 125 KDM@VED KTVSDDKTDPDLYRS EGISTLRQVEERRKEREQANPA
* *
27C2_A NAfiEDfERE--HGrxEsPRELEDHOKEVS DD TDP DENIR SEHR EBMF NCK TNfiNEl AR NERHEGISTLROVEE . . . .. ... ...
27C2 HHHHHHHHEH . . HH——HHHHHHHHHHHHHH-———HHHHHHHHHHHHHHHH- - HHHHHHHHHHHHHHE-——HHHHEH-. .. .. ... ...
Syn6803 16 vsEHTA¥CFD--BRG-—-MAPKQVENGHLKN--F SALWHR LAV 1 ERH Y L.GRYKAVSHUE HEHEFNHKKGOPNFHF SAEFERLVSENLPR
Figure 2

Multiple sequence alignment of FND and DnaD-like domains. Sequences were aligned using ClustalW2 and shaded
with BoxShade. The starting residues are reported at the front of the corresponding sequence. Amino acids identical or similar
in 70% of the sequences are shaded by black or grey background, respectively. Organisms, accession numbers and characteris-
tics of DnaD-like and FND sequences shown in the alignment are given in the additional files | and 4. 2D-structure of Strepto-
coccus mutans DnaD-like domain (PDB: 2ZC2) is shown at the bottom of the alignment. Helices and loops are represented in
red and green respectively. Hydrophobic positions conserved in DnaD (Denoted by red dotes in the additional file 2) are
shaded by pink background and their equivalent in FND (Figure |) shaded by light gren background. Stars indicate the two con-
served hydrophobic positions that are not buried in the Streptococcus mutans DnaD-like domain.

by a star in the Figure 2), but missing in FNDs, are not bur-
ied in the DnaD-like domains structure (data not shown)
and, hence, are probably not required for the folding of
this domain. The highly conserved GggRs0Y(, [K/R]4;
motif that is specific for FNDs (Figures 1 and 2), localizes
in a loop between the helices H3 and H4 (Figures 1 and
3B). The tyrosine is buried within the structure, whereas

the glycine and the two basic amino-acids are exposed on
the surface of FND. Consurf-based mapping of the evolu-
tionarily conserved residues exposed on the surface of the
Syn6803 FND domain [24] (Additional file 3) show that
Gsg Rsgand K, residues cluster with F,, and D, from the
first helix, Eg;, Lss and Y, from the third helix and S,
from the fourth helix. All these residues are either strictly
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Figure 3

Modelling FND. (A) Pymol representation Synechocystis PCC6803 FND modelled with the MODELLER 9vé6 program. Helices
and loops are represented in red and green respectively. Hydrophobic positions of Syn6803 FND conserved in the DnaD-like
domain (Figure 3A and additional file 2) are shown. (B) The highly conserved G;gRs9Y ¢ [K/R],, motif localizes in a loop

between the helices 3 and 4.

or functionally conserved (Figure 1) and hence, could be
engaged in Ftn6-specific interactions.

Functional prediction for Ftné

So far, DnaD-like proteins have only been found in some
low G+C content gram positive bacteria and their associ-
ated phages [14], where they exhibit pleiotropic functions
all related with DNA metabolism. For instance, DnaD was
shown to be involved in initiation of chromosome and
plasmid replication [25,26], sporulation [27], DNA repair
[28] and recombination [29]. Furthermore, the DnaD-
related protein from the thermophilic bacteriophage
GBSV1 exhibits an unspecific nuclease activity [30]. The
exact function of the DnaD-like domain in these processes
remains unclear, but the DnaD-like domain from B. subti-
lis was found to exhibit DNA-binding and DNA-remodel-
ling activities [11-15]. Altogether, these data strongly
suggest that the DnaD-like domain does not define a com-
mon structural fold occurring in functionally unrelated
proteins, but rather that the DnaD-like domain-contain-
ing proteins, including Ftn6, share common functions
involving DNA.

What is the function of Ftn62? FND could suggest a func-
tion in DNA replication for Ftn6. However, this hypothe-
sis is unlikely as Ftn6-depleted mutants do not appear to
affect chromosome replication and do not produce anu-
cleate cells [21]. Furthermore, the N-terminal extension in
DnaD proteins, which interacts with DnaA [8], is missing
in Ftn6 orthologs (data not shown). Alternatively, Ftn6
could function in the cross talk between chromosome rep-

lication and cell division, a fundamental biological proc-
ess not yet investigated in cyanobacteria. In most bacteria,
both processes are intimately co-ordinated, as formation
and placement of the future division septum is regulated
by nucleoid occlusion and only occurs after replication of
a significant portion of the chromosome [1]. By contrast,
Z-ring can assemble at nucleoid-occupied sites and nucle-
oid separation occurs during Z-ring constriction in cyano-
bacteria [21]. This lack of nucleoid occlusion supposes an
efficient mechanism to segregate chromosome trapped at
the midcell during Z-ring constriction. It has recently been
proposed that Ftn6 could be involved in chromosome
segregation in Synechococcus PCC7942 [31]. How Ftn6 is
functionally connected to chromosome segregation
remains unknown. Nevertheless, identification of the
putative DNA-binding domain, FND, strongly supports
the involvement of Ftn6 in this pathway and its interplay
with cell division.

To test this hypothesis, we reasoned that defective chro-
mosomal segregation should generates DNA damages
thereby increasing the sensitivity of the cells to DNA dam-
aging agents. As expected, we found that the Ftn6-
depleted mutant we recently constructed [32] is signifi-
cantly more sensitive to UV rays than the wild-type strain
(Figure 4). Together, our findings strengthen both the
functional relationship between DnaD-like domain-con-
taining proteins and DNA metabolism, and the potential
function of Ftn6 at the interface between DNA replication
and cell division.
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Figure 4

Partial depletion of Ftné causes sensivity to UV. WT
and Ftné-depleted cells (Aftné::Kmr) were grown to 0.5
ODggj and spotted in 4-fold serial dilutions onto MM plates.
Then, the plates were exposed to 0 (control), 250 or 500
J.m-2UV rays.

Conclusion

Although depletion of Ftn6 leads to cell division defects,
the molecular function of this cynobacterial-specific divi-
some component remained unclear. Sequence alignment
of Ftn6 orthologs beforehand identified by BLAST
allowed us to uncover a new conserved domain localized
within the N-terminus of the proteins. Combining several
approaches, we then shown that this domain, designated
here as FND, exhibits sequence and structure similarities
with the DnaD-like domains found in several factors
involved in DNA metabolism. The structure similarities
between FND and DnaD-like domains together with the
sensitivity of the Ftn6-depleted mutant to UV rays, led us
to propose that Ftn6 is functionally linked to DNA metab-
olism, possibly playing a role at the interface between
DNA replication and cell division. Whether this function
involves or not other cell division factors and what is (are)
the DNA target(s) of Ftn6 remain to be determined.

Methods

In silico methods

Databases search of Ftn6 and DnaD domain-containing
proteins were performed using BLAST (e < 10-4) [33,34]
and PsiBLAST [34,35] algorithms. Multiple sequence
alignment of the DnaD-like-containing proteins or/and
Ftn6 orthologs were generated using ClustalW2 [36,37]
(Matrix: BLOSUM, Gap penality: 10 and penality for Gap
extension: 0,1), and visualized with Boxshade [38]. Fur-
ther details are given in the relevant figure legends and in
the additional Files 1 and 4. Fold recognition was per-
formed with PHYRE [39,40]. 3D-structure of Syn6803
FND was modelled using the MODELLER 9v6 program
[23] and visualized with Pymol [41]. Briefly, 10 models of
Syn6803 FND were first built based on the alignment
shown in Figure 2. All 10 models were then evaluated
with DOPE from the MODELLER package and the best
chosen as final model. The overall model quality was
additionally validated with ProSA-Web [42,43].

http://www.biomedcentral.com/1472-6807/9/54

UV-sensitivity tests

WT Synechocystis PCC6803 and its derivative ftn6A4::Km'/
FTNG+ [32] were grown as described [44]. Cells were then
4-fold serially diluted in MM medium and then spotted
onto MM plates. Finally, the plates were or not exposed to
either 250 or 500 J.m2 UV radiation and incubated 7 days
at 30° C under the above described light conditions.
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Additional material

Additional file 1

Description of the Ftn6 sequences identified by BLAST. The table
reports the organisms, the Genbank accession numbers and the length of
the Ftn6 sequences identified by BLAST and shown in the Figures 1 and 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6807-9-54-S1.pdf]

Additional file 2

LOGO profile of the DnaD-like domains. The LOGO profile was gen-
erated from the ClustalW [36] alignment of 82 randomly chosen non
redundant DnaD-like sequences (data not shown) using WebLogo

[22] http://www.weblogo.berkeley.edu. The red dots at the bottom of the
alignment represent the hydrophobic positions conserved in the DnaD-like
domain family. The 3D-structure shown at the top of LOGO profile cor-
responds to the DnaD-like domain of the replication proteins from Strep-
tococcus mutans (PDB: 2ZC2).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-54-S2.pdf]

Additional file 3

Surface amino-acid conservation of the FND domain. The surface
amino-acid conservation of the FND domain was calculated with Consurf
[24] using the alignment shown in Figure 1. The colour-code shown at
the bottom of the structure indicates the residues conservation. Briefly, res-
idues are coloured from purple (highly conserved) to blue (non-conserved)
depending on their respective conservation. Stars indicate strictly con-
served amino-acids. The graphic was generated with Pymol.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1472-
6807-9-54-S3.pdf]

Additional file 4

Description of the DnaD sequences shown in the Figure 2. The table
reports the organisms, the Genbank accession numbers and the length of
the DnaD sequences used to generate the alignment shown in the Figure
2.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6807-9-54-84.pdf]
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