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Abstract

Background: Setting the rules for the identification of a stable conformation of a protein is of
utmost importance for the efficient generation of structures in computer simulation. For structure
prediction, a considerable number of possible models are generated from which the best model
has to be selected.

Results: Two scoring functions, R;and R,,, based on the consideration of packing of residues, which
indicate if the conformation of an amino acid sequence is native-like, are presented. These are
defined using the solvent accessible surface area (ASA) and the partner number (PN) (other
residues that are within 4.5 A) of a particular residue. The two functions evaluate the deviation
from the average packing properties (ASA or PN) of all residues in a polypeptide chain
corresponding to a model of its three-dimensional structure. While simple in concept and
computationally less intensive, both the functions are at least as efficient as any other energy
functions in discriminating the native structure from decoys in a large number of standard decoy
sets, as well as on models submitted for the targets of CASP7. R, appears to be slightly more
effective than R, as determined by the number of times the native structure possesses the
minimum value for the function and its separation from the average value for the decoys.

Conclusion: Two parameters, R;and R, are discussed that can very efficiently recognize the
native fold for a sequence from an ensemble of decoy structures. Unlike many other algorithms
that rely on the use of composite scoring function, these are based on a single parameter, viz., the
accessible surface area (or the number of residues in contact), but still able to capture the essential
attribute of the native fold.

Background

Predicting the native structure of proteins from their
amino acid sequences has yet remained an elusive goal. In
general this entails the development of effective methods
for conformation sampling and the design of an accurate
function for structure discrimination [1,2]. The functions
could be based on elaborate calculations and analyses of
forces between atoms [3,4], or be knowledge-based that

extract relevant parameters from a database of experimen-
tally determined protein structures [5,6]. One important
area of application of knowledge-based potential func-
tions has been in "protein threading" for the prediction of
protein tertiary structure in the absence of detectable
sequence homology. The technique involves threading a
protein sequence onto the frameworks of known protein
folds and finding the most energetically favorable confor-
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mation [7-10]. In addition to fold recognition applica-
tions, where the best conformation of a protein is selected
from a database of known protein conformations, the
knowledge-based scoring functions are also used in pro-
tein folding simulations [6,11-16]. Many statistical scor-
ing functions assume that frequencies of non-bonded
pairs of amino acids follow a Boltzmann-like distribution
and the minimum value of the score occurs in the vicinity
of the lowest energy structure. Additionally, a set of prob-
ability distributions can also be used to construct a scoring
function such that it can identify the maximum probabil-
ity structure.

For testing of empirical energy functions challenging and
diverse datasets of decoy structures that are native-like in
properties have been generated [12,17-19]. Models sub-
mitted in the community-wide experiment, CASP (Criti-
cal Assessment of techniques for protein Structure
Prediction) [20] make up diverse sets of structures result-
ing from various computational approaches [21]. The
most native-like structure needs to be identified from
among these models [22]. An effective potential should
be able to distinguish the native structure from decoy
structures with a high degree of accuracy. Energy functions
based on residue contact or compactness alone do not
have enough discriminating power [12], or can rank the
native structure highly only when the competing confor-
mations are more random-coil like [23]. However, here
we present two knowledge-based scoring functions based
on the analysis of residue packing in protein structures
that are quite robust in discriminating the native confor-
mation from a number of misfolded conformations for a
given primary protein sequence. The functions were also
tested on ~ 19000 models from server predictions for 71
targets of CASP7 [20]. As a descriptor for the residue pack-
ing we use the average values of the accessible surface area
or the number of other residues in contact around a given
residue, calculated from a database of globular proteins.
Each of the function then evaluates the cumulative value
for the deviation of the parameter for individual residues
from the corresponding average value over the whole
polypeptide chain. The experimental structure is found to
have the minimum deviation and thus the minimum
value of the function, when applied to a set of decoys from
which the native structure has to be identified. The success
of the function indicates that the burial of each residue
and its contact to the surrounding residues is optimized
during folding and the average values of these parameters
can be used as constraint to simulate folding process.
Additionally, a surface patch with residues having a large
overall deviation of these parameters from the average val-
ues may be indicative of the binding region on a protein
structure, an issue that would be addressed in future to
provide a common perception to both the folding and the
binding processes.

http://www.biomedcentral.com/1472-6807/9/76

Results

Scoring functions have been used to validate X-ray crystal
structures, assess and rank three-dimensional models gen-
erated for a protein sequence, predict the effect of muta-
tions, etc. Here, we are concerned with the identification
of the native structure from decoys. The idea of the use of
the discriminatory function originated from the formula
of R-factor in crystallography [24]. An exact equivalent
formula would have meant the use of the expression (1)
instead of (3), given in Methods.

_ I ASA 4 —<ASAy>|

1
Y<ASA > (1)

R

The individual term in Eq. (3) involves the absolute differ-
ence between the observed and the average values of ASA
for a given residue, normalized by the average value.
These terms are summed over the whole sequence. In Eq.
(1) the numerator and the denominator are summed sep-
arately. Some other modified formulae, including the use
of the standard deviation on the average values <ASA,> in
the denominator, were also tried, but (2) and (3) were
found most efficient to identify the native structure from
a set of decoys. Depending on the structural context larger
residues may have a considerable variation in their ASA
values in protein structures (as indicated by larger stand-
ard deviations, Table 1) - normalization of the difference
in the numerator in Eq. (3) has the effect of damping the
contribution of such residues in the summation.

Table I: Average values of partner number (<PN>) and
accessible surface area (KASA>) of different amino acid residues

Residue <PN> <ASA>
Gly 74 (2.2) 26.6 (24.5)
Ala 8.6 (2.5) 28.1 (30.9)
Ser 7.9 (2.6) 39.2 (33.2)
Cys 10.0 (2.3) 17.1 (21.0)
Thr 8.5 (2.6) 44.2 (36.0)
Asp 7.9 (2.5) 58.1 37.2)
Pro 7.7 (2.6) 54.2 (39.5)
Asn 83(2.7) 57.9 (40.8)
Val 10.3 (2.6) 24.1 (32.0)
Glu 8.4 (2.5) 73.4 (41.9)
Gln 9.0 (2.7) 68.6 (43.3)
His 9.7 2.9) 53.8 (44.6)
Leu 11.0 (2.7) 28.8 (38.0)
lle 11.0 (2.7) 25.0 (35.2)
Met 11.2 3.1) 35.5 (45.8)
Lys 84 (2.4) 95.8 (42.9)
Phe 11.9 (2.9) 31.0 (39.8)
Tyr 1.5 @3.1) 45.5 (45.0)
Arg 10.1 (3.1) 85.5 (53.3)
Trp 12.6 (3.2) 43.5 (47.6)

Data taken from [26]. The standard deviations are in parenthesis.

Page 2 of 9

(page number not for citation purposes)



BMC Structural Biology 2009, 9:76

Quantification of the overall packing of residues in protein
structures

The average number of partner residues and the average
accessible surface area for all twenty amino acids are pro-
vided in Table 1[25]. While the <ASA> values are almost
identical to those calculated earlier [26], the values for the
partner number are different, as the calculation is residue-
based here, while in the earlier study the individual atoms
constituted the partners.

As R, and R indicate the extent of deviation of PN and
ASA of residues from their average values, taken over the
whole structure, these parameters can be used to judge the
optimization of packing of residues in a structure [27]. We
also wanted to see if there is any variation depending on
the class of protein. However, as R, and R provide cumu-
lative values over all the residues in a structure, it is sensi-
ble to divide them by the number of residues in a structure
before comparison. Individual protein structures in the
dataset were classified according to CATH (Class, Archi-
tecture, Topology, Homologous superfamily; http://
www.cathdb.info/index.html) into 157 all-o, 142 all-B
and 133 of (including a+p and o/B) classes of proteins.
The normalized values (Table 2) are rather similar, except
slightly higher values in the all-B class, indicating some-
what higher deviations from the optimum values of PN
and ASA in these structures. The observation of higher val-
ues in B-proteins is in tune with a relatively lesser packing
efficiency in these proteins, as is also demonstrated by the
higher occurrence of cavities involving residues in pB-
sheets [28].

Identification of the native structure from misfolded
decoys

PROSTAR decoy sets

The objective of this work is to discriminate between the
native structure and one or more misfolded or low-resolu-

Table 2: Average values of R, and R, in various protein structural
classes?

Number of structures R, R,

All-a. 157 112 (63) 30 (20)
0.92 (0.86)  0.27(0.27)

All-B 142 115 (60) 31(19)
1.26 (1.01)  0.37(0.33)

ap b 133 149 (70) 42 (23)
0.72 (0.55)  0.23(0.18)

Overall 432 143 (91) 39 (23)
0.83(0.76)  0.22(0.17)

aAccording to CATH [59]. bIncluding a/f and a+p.

Standard deviations are in parentheses. Normalized (dividing the
values obtained from equations (2) and (3) by the number of residues)
values are given in italics.

http://www.biomedcentral.com/1472-6807/9/76

tion structures. The utility of R, and R, was tested on the
decoy sets in the PROSTAR website and the results are
shown in Table 3. When compared with other atomic or
residue-based potentials, the present parameters, R, and
R, have similar or better performance, except for 'Ifu'. Of
the two parameters, R, based on residue accessibility per-
forms better than the one derived on the basis of partner
number (R,).

The 'Misfold' decoy set, generated by Holm and Sander
[17], consists of 24 examples of pairs of proteins with the
same number of residues in the chain, but different
sequences and conformations. Sequences are swapped
between members of a pair, resulting in rather inappropri-
ate environments for most of the side chains. For this set,
R, selects 100% of the structures correctly, but R}, fails in
four. Attempts were made to see if the use of other cut-off
distances (4.0, 5.0, 6.0 and 7.0 A) in the definition of R,
improved the situation, but the performance of the
parameter derived at 4.5 A was found to be the best.

The 'Ifu' decoy set is based on a set of 43 peptides, 10-20
residues long, which are proposed to be independent
folding units as determined by local hydrophobic burial
and experimental evidence [29]. In this test set, R;and R,
were unsuccessful to pick 21 and 22, respectively, out of
43 native structures. While performing the best, even the
knowledge-based potential [14] failed in 11 cases in this
test set. This is probably because the targets in these sub-
sets are protein pieces and it is difficult for residue packing
parameters derived from larger proteins to evaluate these
structures.

The 'Asilomar’ decoy set resulted from the first experiment
on the Critical Assessment of Protein Structure Prediction
methods (CASP), which produced a set of 41 comparative
models of six different proteins [30]. The models vary in
Ce rmsd to the corresponding experimental conforma-
tion, ranging from 0.53 to 7.40 A, depending on the diffi-
culty of the model building process. In this test set, the
parameter R selects 100% native structures correctly, by
far the best result from any discriminatory function. For
R,, missing 5 out of 41 cases, the performance is at par
with other functions.

The 'Pdberr' decoy set consists of structures determined
using X-ray crystallography that were later found to con-
tain errors, and the corresponding corrected experimental
conformations [31]. The 'sgpa’ decoy set consists of the
experimental structure Streptomyces griseus Protease A
(2sga) and two conformations generated by molecular
dynamics simulations starting with the experimental
structure [32]. In these test sets, where the decoys are low-
resolution X-ray structures, both the scoring functions R
and R, correctly picked the high-resolution structures in
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Table 3: Identification of the native structure from decoys in PROSTAR decoy sets using different scoring functions2

Parameters Misfold Ifu Asilomar Pdberr and sgpa
R, 24/24 22/43 41/41 5/5
R,® 20/24 21/43 36/41 5/5
Atomic KBPe 24/24 32/43 37/41 5/5
RAPDFd 24/24 30/43 37/41 5/5
CDFd 19/24 21/43 35/41 5/5
Residue contact potential® 24/24 22/43 35/41 4/5

PROSTAR website [31].

aThe first number of each column is the number of correctly identified decoys, and the second one after the slash is the total number of decoys.
With either of the first two parameters the native structure is correctly identified if its value is smaller than that from any other structure in the

decoy set. The results with the other parameters are taken from [14].
bThe parameters developed in this study.
¢The atomic Knowledge-Based Potential from Lu and Skolnick [14].

dRAPDF and CDF are atomic and residue-based potentials, respectively, from Samudrala and Moult [13].

eResidue-based quasichemical potential from Skolnick et al[33].

all cases, as did all other potential functions, except the
one based on the residue contact potential with a compo-
sition-corrected scale [33].

Park and Levitt decoy set

The Park and Levitt decoy test set, available on the web site
http://dd.compbio.washington.edu, consists of 7
sequences, each with nearly 600-700 decoys that cover
structures showing an rmsd ranging from 0 (the correct
fold) to 10 A from the native structure [12]. The protein
structures were generated by using four-state models (four
discrete @,y angles) to define the conformation of each of
ten selected residues in each protein using an off-lattice
model. From the very large number of conformations gen-
erated, only those compact structures were retained that
scored well using a variety of scoring functions, as well as
having a reasonable rmsd from the native structure. The 4-
state-reduced decoy data set given in Additional file 1:
Table S1 includes a range of small proteins from 54-75
residues with varying topological folds, with the numbers
of decoys ranging from 630 for 1ctf to 687 for 4pti. A pos-

100 -
90 -

80 A

Value of the native
structure

rmsd (A)

Figure |
Scatter plot of R, vs. rmsd for a representative pro-
tein structure, |ctf, along with its decoys.

itive Z-score (Equations (4) and (5)) indicates that the
value of the parameter for a particular native fold is lower
than the average of the distribution. While considering
the Z, the native structure is well separated from the aver-
age of the distribution for all the structures, but Zp shows
an inferior result for 1r69 and 1sn3. Figure 1 plots R, vs
rmsd for a representative dataset corresponding to the
PDB file, 1ctf. The value of R, is the minimum for the
native structure. There is a good linear correlation
between the two variables (R2? is 0.78), better than that
(0.6) obtained using the knowledge-based potential of Lu
and Skolnick [14]. While the various energy functions
based on empirical contact, surface area and van der
Waals energy did not perform consistently well to distin-
guish between correct and incorrect conformations and
had to be used in combination for the proper identifica-
tion of the correct fold [12], the rather simple parameter,
R, has a remarkable discriminatory power.

The Levitt low-minima decoy sets (LMDS) also contain
structural decoys (the number ranging from 343 to 500)
for 7 small proteins, 36 to 68 residues long [19]. From an
initial ten thousand structures, generated by randomly
modifying only the loop dihedral angles, which were sub-
jected to minimization using a modified ENCAD force
field involving united and soft atoms [34], up to five hun-
dred of the lowest energy conformations were retained to
make up the decoy sets. For all the 7 cases the native struc-
ture has the minimum R, value and the corresponding Z-
score indicates that it is well separated from the decoys
(Additional file 1: Table S1). However, Z, gives an inferior
result for 1bba and 1fc2. Other energy functions also
failed to identify the native structure for these two pro-
teins [15,22] due to the fact that the native conformation
is simply not very well defined for the former [35] and the
latter is a fragment of a larger protein and additionally, a
constituent of a complex, and in the unbound form may
have a structure different from that in the complex [36].
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Interestingly however, based on R, both the native struc-
tures are separated by about two standard deviations from
the average of the distribution.

ROSETTA decoy sets

The ROSETTA all-atom decoy sets are composed of five
different proteins ranging in size from 92 to 116 residues,
and the number of decoys ranging from 994 to 999 (Addi-
tional file 1: Table S1) [37]. Fragments, between 3 and 9
residues, from known structures matched to the targets
through a multiple sequence alignment process, were
assembled into the protein structures via the fragment
insertion-simulated annealing strategy [37]. The scoring
functions used to select the lowest energy decoys included
hydrophobic burial, electrostatics, the formation of B-
sheets and the packing of a-helices and B-strands. The Z-
scores based on R, and R, indicate that both the scoring
functions perform well over all the 5 structures. The large
Z-scores seen here, as compared to those in others, should
be due to the high rmsds in the decoys used in this test set.

The original ROSETTA decoy set has been improved by
increasing the number of proteins and frequency of near
native models, providing 1,400 model structures for 78
diverse, single domain proteins with varying degrees of
secondary structure and length from 25 to 87 residues for
the evaluation of scoring functions [16]. The discrimina-
tory ability of our scoring functions can be seen from the
results on 41 cases (a subset of the complete dataset,
which is downloadable) presented in Additional file 1:
Table S2. The native structure did not have the minimum
R value in 3 cases, while R, failed in two additional cases.
For these, the Z-score is also quite small, Z, even register-
ing a negative value in two. It may be noted that two struc-
tures (1res and 1uxd) among the failed cases were derived
from NMR experiments and the Rosetta energy functions
are also less efficient in identifying the NMR structures as
compared to X-ray crystal structures, probably because the
former structures have greater deviation of side chain con-
formations from the canonical rotamer conformations
[16].

Identification of the native structure from the native-like
conformation constructed by homology modeling

Samudrala and Levitt [19] have a decoy set (hg_structal)
for 29 globins. Each globin has been built by comparative
modeling using 29 other globins as templates with the
program segmod [38]; the rmsd for the modeled struc-
tures range from 1.96 to 8.57 A. A similar decoy set
(ig_structal_hires) involving 20 immunoglobulins and at
a relatively higher resolution (1.7-2.2 A, compared to the
range of 1.7-3.1 A for the full set of 61 proteins) is also
available. The application of our scoring function on these
two sets yields results given in Table 4. As with the other
decoy sets, R, performs better than R, in identifying the

http://www.biomedcentral.com/1472-6807/9/76

native structure. Even though the homology built models
in the 'ig_structal_hires' set are very close to the native
structure, the latter was identifiable in 90% of the cases.

Score of the experimental structure relative to the solutions
submitted to CASP7

The ability of our scoring function to identify the native
structure from the best near-native solutions has been
tested on the CASP7 dataset [20]. This is the most difficult
test as the decoys are the best predicted near-native struc-
tures submitted by different groups participating in the
CASP experiment. CASP7 experiment consists of 95
accepted targets for which about 22000 models were sub-
mitted. We have excluded the NMR structures and
retained 71 targets (with ~ 19000 models) to evaluate our
scoring functions (Additional file 1: Table S3). The rmsd
between the native structure and the best predicted solu-
tion varies in the range 0.4 - 2.6 A in the whole dataset. Z
identifies the best solution in 51 cases and Z in 38. Table
5 compares the results of our study vis-a-vis those from
other algorithms [22]. As we have seen before, R, performs
better than R,. But even R, outperforms other existing
functions in locating the native structure among the top
ten solutions. R, identifies the native structure as the top
solution in 72% of cases, which is considerably better
than the next best performer (DFIRE and QMEAN3) at
62%.

Discussion

There are many energy functions (knowledge based statis-
tical scoring function or physics-based or a combination
of both) which find the correct native conformation from
misfolded decoys [3,6,9,12-15,22,39-42]. However, it is
rather nontrivial to develop a function that works across
different decoy sets and a combination of functions is nor-
mally used [12,13]. R-factor is the gold-standard for
expressing the accuracy of crystallographic analysis, and as
knowledge-based functions are mostly "trained" on crys-
tal structures it is rather gratifying to develop functions
similar to R-factor that can also be used to characterize the
native structure (Table 2).

The present study demonstrates the development of scor-
ing functions from the properties of residue packing that
can be useful for discriminating the native conformation

Table 4: Identification of native structure from decoys
constructed by homology modeling

Parameters hg_structal ig_structal_hires
R, 23/29 18/20
R 15/29 17/20

p

Dataset taken from [19]http://dd.compbio.washington.edu. The first
column in each category is the number of correctly identified decoys,
and the second column is the total number of decoys.
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from various misfolded conformations for a given protein
sequence. The algorithm assumes that a protein tries to
take up a fold that has the minimum deviation of ASA (or
PN) of each residue from the average value observed over
all protein structures. The function R, based on residue
accessibility, performs better than the one derived from
the partner number, R, on decoy sets. The test on various
decoy sets from the PROSTAR website demonstrated that
the knowledge based scoring function developed in this
study performs better or even at least of the same order
than those previously derived by many authors
[12,14,15]. Not only the present knowledge-based scoring
functions pick the correct native structure in most cases,
but the discrimination ratio is also better than that of the
other potentials. However, as Equations (2) and (3) use
the average values derived from a database of globular
proteins, it is not likely to be very discriminatory for small
proteins or peptides (as seen for the 'Ifu’ set in Table 3). As
such it would not be useful for checking local model qual-
ity in protein structures, as done by packages such as
PROSA [43]. Along the same line it may be mentioned
that the Verify3D server [44] for the visual analysis of the
quality of a crystal structure works best on proteins with at
least 100 residues.

The Park and Levitt decoy set had been shown to be quite
a challenging dataset where the lowest-energy structures
typically were 6-10 A rmsd away from native ones [12].
The improved residue-based potential [18] also cannot
recognize the native and near-native structures in all cases.
The knowledge based scoring functions derived in this
study are quite efficient to identify the near-native fold in
Park and Levitt decoy sets. The correlation between the
scoring function and rmsd is good in all cases and most of

Table 5: Performance of the different scoring function for
predicting the native structure among the best near-native
structures submitted in CASP7

% of the native structureb

Method? z .. Rankl Rankl0
Modcheck 1.99 49.47 72.63
RAPDF -2.09 57.89 81.05
DFIRE -1.25 62.11 75.79
ProQ 1.51 9.47 33.68
ProQ_SSE 1.76 14.74 44.21
FRST -2.41 58.95 75.79
QMEAN3 -2.27 62.11 78.95
R, 1.69 53.52 91.55
R 2.17 71.83 98.59
Z, . corresponds to the average Z-score of the native structure.

2 Except the last two functions, the performance of others are based
on the data provided in Table 6 of [22].

b % of the native structure with rank | or within rank 10 from among
all the solutions submitted in CASP7.
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the cases the scoring functions have minimum value for
the native structure. The scoring functions perform well
also in the PROSTAR decoy sets, Levit's Local-Minima
Decoy Sets (LMDS) and also in ROSETTA All-atom Decoy
Sets. Considering 222 independent cases considered in
this analysis Ry and R;, can efficiently discriminate native
structures from all their corresponding decoys with a suc-
cess rate greater than 85% and 74%, respectively. If we do
not consider the 'Ifu' dataset, which comprises of small
fragments of polypeptide chains, the success rate increases
to 94% and 80%, respectively. The most rigorous test of a
scoring function is to evaluate its performance in identify-
ing the native structure with reference to the models sub-
mitted in CASP7 experiment. Even here, both R;and R,
the former in particular, stand out from all other methods
(Table 5).

As our scoring functions depend on ASA or PN, these
should be closely related to potentials of mean force
derived from solvation or packing considerations. The
performance of these potentials, however, depend criti-
cally on how the standard state is specified [6,12,23]. As
the core and surface regions in proteins constitute distinct
environments, potentials are sometimes divided into two
parts, for the buried and the solvent-accessible regions
[40]. The use of the average values of ASA or PN in globu-
lar proteins seems to have eliminated the need of such
division, or the debate on the proper choice of the stand-
ard state.

A discussion on the uniqueness of our parameters vis-a-vis
other knowledge-based discrimination functions is in
order. First, a residue in the sequence is normally repre-
sented in these functions with one or two positions in the
three-dimensional space and one or more of its proper-
ties, such as the secondary structure or backbone dihedral
angle preferences, features in distance or sequence separa-
tion from other residues, etc. are considered [7,23]. With
such a coarse representation the function may not be as
efficient as an all-atom discriminatory function, which
takes into account the environment of all the atoms in a
residue [13,45-47]. An all-atom representation is implicit
in our method, as all the atoms are needed for the calcu-
lation of ASA or the partner number. However, each resi-
due in the sequence contributes singly to the derivation of
R;or R,,. This is also in contrast to residue-residue interac-
tion energy for each residue pair that is normally
employed in other functions [12,48,49]. Furthermore,
residue triplets and four-body contact potentials have also
been developed [50,51]. Secondly, the energy functions
are generally less discriminatory when used individually,
and the use of the hybrid scoring function is the norm for
an enhanced performance [12,16,22]. While conceptually
simple, R, or R, can work as efficiently. Thirdly, most for-
mulations use energy as the criterion (with the assump-
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tion that the native structure is at a global free-energy
minimum), while our function seeks to find the confor-
mation that has the minimum deviation from the average
value of the partner number or ASA. This way the selection
of the most compact state of the polypeptide chain corre-
sponding to a given sequence is achieved. The parameters
are less likely to be fooled by over-abundance (which is
penalized to the same extent as lower-abundance in equa-
tions 2 and 3) of contacts, as is the case with some func-
tions [12]. Lastly, as the functions can identify the correct
structure from the erroneous ones modeled from X-ray
data ('Pdberr' set in Table 3) and vary within a narrow
range in different protein classes (Table 2), these can be
used for the validation of the structure determined crystal-
lographically [52].

The functions developed here can also be used to deline-
ate the compatibility of the sequence to a fold For exam-
ple, azurin [53] and plastocyanin [54] are two small
proteins having the same fold (a sandwich of two B-sheets
having seven strands), but sequence identity of only 17%
over an aligned length of 86 residues (Table 6). Expect-
edly, they have very similar R, and R, values. More inter-
estingly however, when the sequence of plastocyanin is
considered over the structure of azurin one gets a value of
0.97 for (Ry),u/pe quite close to 0.89 obtained for the
reverse process ((Ry),cy/an) thereby indicating the com-
patibility of the two sequences to the same fold.

Conclusion

This work demonstrates the effectiveness of a simple
knowledge-based scoring function derived from residue
packing for discriminating the native structures from a
large set of decoys constructed by several groups. This
knowledge-based scoring scheme is simple to derive and
less computationally intensive than other energy func-
tions and the performance is better (or at least at par)
compared to others. Used in conjunction with other
chemically intuitive parameter that captures the essence of
the protein structure, it should be possible to achieve
complete discrimination between the native structure and
decoys.

http://www.biomedcentral.com/1472-6807/9/76

Methods

Atomic coordinates were obtained from the Protein Data
Bank (PDB) [55]. The analysis was carried out using the
dataset of 432 polypeptide chains in 418 PDB files (given
in [26]) with an R-factor < 20%, a resolution < 2.0 A and
sequence identity < 25%. Also the polypeptide chains
with >40% of atoms with temperature factor (B-factor)
>30 A2 were excluded. The calculation of the partner
number was restricted only to the well-ordered residues
by excluding those with >40% atoms with temperature
factor >30 A2. The solvent accessible surface area (ASA)
was computed using the program NACCESS [56], which is
an implementation of the Lee and Richards algorithm
[57]. The partner number of a residue is the number of
other residues within a distance of 4.5 A from any atom of
the residue under consideration; the flanking residues
were not considered as partner if the interaction was only
with the main-chain atoms. The reason for the selection of
the particular threshold value for the distance has been
discussed [26,58]. To be identified as a partner it is
enough if just a pair of atoms is in contact.

Two parameters R;, and R, based on the observed partner

number and the accessibility at a given position in the
protein sequence, as compared to the average value of the
parameters for the same residue type in the whole data-
base, were developed as given in the following two equa-
tions

whole chain
R = |PN xj—<PN >| @)
P - <PNy>

R, = Whoihain | ASA xi—<ASAx>| )
s = <ASAx>

i=1
where PN,; and ASA, are the observed partner number
and the solvent accessible surface area, respectively, for a
residues of type x occurring at a particular position, i, in a
PDB file and <PN,> and <ASA,> are the average values of
the residue type x in the analyzed dataset. Considering
(3), the function sums up the absolute value of the devia-

Table 6: R,and R, for two proteins having the same fold belonging to the {3 class

Name of the protein Number of residues Number of aligned residues R, R,

Azurin (lazu) 126 84 1.12 0.33
(1.06) (0.29)

Plastocyanin (5pcy) 99 84 1.33 0.46
(1.14) (0.32)

The structures are aligned using the software SSM at EBI http://www.ebi.ac.uk/msd-srv/ssm. The values calculated considering only the aligned

amino acid residues are given in parenthesis. To quantify the sequence structure compatibility between the structures, two more parameters are

computed over the aligned residues. (R
<ASA> . )I<ASA>

=0.97 and (R

s)azu/pcy s) pcylazu

pcy’

= 0.89. Each term contributing to the former corresponds to (ASA
i.e., in Eq. (3) the observed value at a given position in the structure of azurin is compared to the average value corresponding
to the aligned residue type at the same position in the sequence of plastocyanin. The opposite is done in the calculation of (R

azu ~

s) peylazu
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tion of ASA at each position in the sequence from the aver-
age ASA of the residue type, each term being normalized
by the average ASA value. The magnitude of each of the
two parameters derived using (2) and (3) is used to dis-
criminate the near native fold from the misfolded decoys.
For the correct fold the values of these two parameters
should be minimum.

A number of decoy datasets have been used from litera-
ture, the details of which are provided in Results. The Z-
score of a native structure and the misfolded decoys was
also evaluated. The Z-scores using the residue accessibility
(Z,) and residue partner number (Z,) of a particular pro-
tein conformation are defined by the following equations

<Rp>-Rp.
7, =—p7"pnat (4)
o
<R¢>—Rq.
Z, = S s-nat (5)
(2

where Ry, (0or R, ,,) is the value of the parameter for the
native conformation, and <Rg> (<R,>) and c are the aver-
age and the standard deviation of the distribution of the
parameter in the set. The magnitude of the Z-score is an
indication of how far that native conformation is sepa-
rated from the near native structures in the distribution.
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