Skip to main content

Table 5 Decomposition of ZD-s in three components for the enzyme-proteic inhibitor complexes. Statistical analysis of the empirical correlations

From: In silico screening of mutational effects on enzyme-proteic inhibitor affinity: a docking-based approach

  

ZDsc

ZDel

ZDdes

ZDsc+el

ZDsc+des

ZDel+des

 

Na

Ab

Bb

Rc

p(R)d

A

B

R

p(R)

A

B

R

p(R)

A

B

R

p(R)

A

B

R

p(R)

A

B

R

p(R)

HRI-ANG

24

35.5

-0.5

0.82

< 0.0001

10.2

-0.3

0.73

< 0.0001

-2.0

-0.1

0.34

0.105

45.6

-0.9

0.93

< 0.0001

33.4

-0.6

0.73

< 0.0001

8.1

-0.4

0.90

< 0.0001

BN-BS_1e

11

56.4

-1.8

0.91

0.0001

-6.4

-0.8

0.56

0.073

-20.3

2.2

0.62

0.042

30.2

-0.9

0.87

0.0005

41.1

-1.3

0.61

0.045

-1.1

-1.1

0.46

0.150

BN-BS_2f

11

56.8

-1.8

0.89

0.0002

-9.0

-0.6

0.36

0.282

-19.4

1.7

0.53

0.092

35.5

-1.0

0.81

0.0023

26.3

-1.0

0.50

0.1139

-11

-0.3

0.1

0.7628

BPTI-βtTRYPS

8

31.9

0.9

0.67

0.071

-2.9

0.3

0.57

0.137

6.6

0.6

0.79

0.021

29.0

1.2

0.75

0.032

38.5

1.5

0.82

0.013

3.7

0.9

0.85

0.008

  1. aNumber of analyzed interactions, i.e. three docking runs for each variant.
  2. bCoefficients of the linear regression equation fitting the experimental data. In detail, the equation is in the form Y = A + BX, where Y is the experimental ΔG° expressed in kcal/mol, A (kcal/mol) is the intercept, B (kcal/mol) is the slope and X is the corresponding ZD-s component.
  3. cLinear correlation coefficient.
  4. dLinear correlation coefficient probability.
  5. eData referring to the protonated form of H102Bn.
  6. fData referring to the neutral form of H102Bn.