Vogt G, Woell S, Argos P: Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 1997, 269(4):631–643. 10.1006/jmbi.1997.1042
Article
CAS
Google Scholar
Kumar S, Tsai CJ, Nussinov R: Factors enhancing protein thermostability. Protein Eng 2000, 13(3):179–191. 10.1093/protein/13.3.179
Article
CAS
Google Scholar
Jaenicke R, Bohm G: The stability of proteins in extreme environments. Curr Opin Struct Biol 1998, 8(6):738–748. 10.1016/S0959-440X(98)80094-8
Article
CAS
Google Scholar
Vieille C, Zeikus GJ: Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001, 65(1):1–43. 10.1128/MMBR.65.1.1-43.2001
Article
CAS
Google Scholar
Berezovsky IN, Shakhnovich EI: Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci U S A 2005, 102(36):12742–12747. 10.1073/pnas.0503890102
Article
CAS
Google Scholar
Szilagyi A, Zavodszky P: Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 2000, 8(5):493–504. 10.1016/S0969-2126(00)00133-7
Article
CAS
Google Scholar
Kisker C, Schindelin H, Alber BE, Ferry JG, Rees DC: A left-hand beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. Embo J 1996, 15(10):2323–2330.
CAS
Google Scholar
Chakravarty S, Varadarajan R: Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry 2002, 41(25):8152–8161. 10.1021/bi025523t
Article
CAS
Google Scholar
Goldstein RA: Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation. Protein Sci 2007, 16(9):1887–1895. 10.1110/ps.072947007
Article
CAS
Google Scholar
Glyakina AV, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV: Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics 2007, 23(17):2231–2238. 10.1093/bioinformatics/btm345
Article
CAS
Google Scholar
Liang HK, Huang CM, Ko MT, Hwang JK: Amino acid coupling patterns in thermophilic proteins. Proteins 2005, 59(1):58–63. 10.1002/prot.20386
Article
CAS
Google Scholar
Fukuchi S, Nishikawa K: Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol 2001, 309(4):835–843. 10.1006/jmbi.2001.4718
Article
CAS
Google Scholar
Bohm G, Jaenicke R: Relevance of sequence statistics for the properties of extremophilic proteins. Int J Pept Protein Res 1994, 43(1):97–106.
Article
CAS
Google Scholar
Jafari-Aghdam J, Khajeh K, Ranjbar B, Nemat-Gorgani M: Deglycosylation of glucoamylase from Aspergillus niger: effects on structure, activity and stability. Biochim Biophys Acta 2005, 1750(1):61–68.
Article
CAS
Google Scholar
Fujii T, Hata Y, Oozeki M, Moriyama H, Wakagi T, Tanaka N, Oshima T: The crystal structure of zinc-containing ferredoxin from the thermoacidophilic archaeon Sulfolobus sp. strain 7. Biochemistry 1997, 36(6):1505–1513. 10.1021/bi961966j
Article
CAS
Google Scholar
Yano JK, Poulos TL: New understandings of thermostable and peizostable enzymes. Curr Opin Biotechnol 2003, 14(4):360–365. 10.1016/S0958-1669(03)00075-2
Article
CAS
Google Scholar
Razvi A, Scholtz JM: Lessons in stability from thermophilic proteins. Protein Sci 2006, 15(7):1569–1578. 10.1110/ps.062130306
Article
CAS
Google Scholar
Maes D, Zeelen JP, Thanki N, Beaucamp N, Alvarez M, Thi MH, Backmann J, Martial JA, Wyns L, Jaenicke R, Wierenga RK: The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures. Proteins 1999, 37(3):441–453. 10.1002/(SICI)1097-0134(19991115)37:3<441::AID-PROT11>3.0.CO;2-7
Article
CAS
Google Scholar
Kannan N, Vishveshwara S: Aromatic clusters: a determinant of thermal stability of thermophilic proteins. Protein Eng 2000, 13(11):753–761. 10.1093/protein/13.11.753
Article
CAS
Google Scholar
Greaves RB, Warwicker J: Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles. BMC Struct Biol 2007, 7: 18. 10.1186/1472-6807-7-18
Article
Google Scholar
Boos W, Shuman H: Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 1998, 62(1):204–229.
CAS
Google Scholar
Davidson AL, Shuman HA, Nikaido H: Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci U S A 1992, 89(6):2360–2364. 10.1073/pnas.89.6.2360
Article
CAS
Google Scholar
Bjorkman AJ, Binnie RA, Zhang H, Cole LB, Hermodson MA, Mowbray SL: Probing protein-protein interactions. The ribose-binding protein in bacterial transport and chemotaxis. J Biol Chem 1994, 269(48):30206–30211.
CAS
Google Scholar
Neiditch MB, Federle MJ, Pompeani AJ, Kelly RC, Swem DL, Jeffrey PD, Bassler BL, Hughson FM: Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 2006, 126(6):1095–1108. 10.1016/j.cell.2006.07.032
Article
CAS
Google Scholar
Quiocho FA, Ledvina PS: Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 1996, 20(1):17–25. 10.1111/j.1365-2958.1996.tb02484.x
Article
CAS
Google Scholar
Bjorkman AJ, Mowbray SL: Multiple open forms of ribose-binding protein trace the path of its conformational change. J Mol Biol 1998, 279(3):651–664. 10.1006/jmbi.1998.1785
Article
CAS
Google Scholar
Magnusson U, Chaudhuri BN, Ko J, Park C, Jones TA, Mowbray SL: Hinge-bending motion of D-allose-binding protein from Escherichia coli: three open conformations. J Biol Chem 2002, 277(16):14077–14084. 10.1074/jbc.M200514200
Article
CAS
Google Scholar
Sharff AJ, Rodseth LE, Spurlino JC, Quiocho FA: Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry 1992, 31(44):10657–10663. 10.1021/bi00159a003
Article
CAS
Google Scholar
Bao Q, Tian Y, Li W, Xu Z, Xuan Z, Hu S, Dong W, Yang J, Chen Y, Xue Y, Xu Y, Lai X, Huang L, Dong X, Ma Y, Ling L, Tan H, Chen R, Wang J, Yu J, Yang H: A complete sequence of the T. tengcongensis genome. Genome Res 2002, 12(5):689–700. 10.1101/gr.219302
Article
CAS
Google Scholar
Nakai K, Horton P: PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 1999, 24(1):34–36. 10.1016/S0968-0004(98)01336-X
Article
CAS
Google Scholar
Schellman JA: The thermodynamic stability of proteins. Annu Rev Biophys Biophys Chem 1987, 16: 115–137. 10.1146/annurev.bb.16.060187.000555
Article
CAS
Google Scholar
Cohen DS, Pielak GJ: Stability of yeast iso-1-ferricytochrome c as a function of pH and temperature. Protein Sci 1994, 3(8):1253–1260.
Article
CAS
Google Scholar
Cuneo MJ, Changela A, Warren JJ, Beese LS, Hellinga HW: The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites. J Mol Biol 2006, 362(2):259–270. 10.1016/j.jmb.2006.06.084
Article
CAS
Google Scholar
Navaza J: AMoRe: an automated package for molecular replacement. Acta Cryst 1994, A50: 157–163.
Article
CAS
Google Scholar
McDonald IK, Thornton JM: Satisfying hydrogen bonding potential in proteins. J Mol Biol 1994, 238(5):777–793. 10.1006/jmbi.1994.1334
Article
CAS
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22(22):4673–4680. 10.1093/nar/22.22.4673
Article
CAS
Google Scholar
Wisz MS, Hellinga HW: An empirical model for electrostatic interactions in proteins incorporating multiple geometry-dependent dielectric constants. Proteins 2003, 51(3):360–377. 10.1002/prot.10332
Article
CAS
Google Scholar
Weers PM, Abdullahi WE, Cabrera JM, Hsu TC: Role of buried polar residues in helix bundle stability and lipid binding of apolipophorin III: destabilization by threonine 31. Biochemistry 2005, 44(24):8810–8816. 10.1021/bi050502v
Article
CAS
Google Scholar
Criswell AR, Bae E, Stec B, Konisky J, Phillips GN Jr.: Structures of thermophilic and mesophilic adenylate kinases from the genus Methanococcus. J Mol Biol 2003, 330(5):1087–1099. 10.1016/S0022-2836(03)00655-7
Article
CAS
Google Scholar
Watanabe K, Masuda T, Ohashi H, Mihara H, Suzuki Y: Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule. Eur J Biochem 1994, 226(2):277–283. 10.1111/j.1432-1033.1994.tb20051.x
Article
CAS
Google Scholar
Bian Y, Liang X, Fang N, Tang XF, Tang B, Shen P, Peng Z: The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease. FEBS Lett 2006, 580(25):6007–6014. 10.1016/j.febslet.2006.09.068
Article
CAS
Google Scholar
Takagi H, Takahashi T, Momose H, Inouye M, Maeda Y, Matsuzawa H, Ohta T: Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J Biol Chem 1990, 265(12):6874–6878.
CAS
Google Scholar
Hennig M, Darimont B, Sterner R, Kirschner K, Jansonius JN: 2.0 A structure of indole-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability. Structure 1995, 3(12):1295–1306. 10.1016/S0969-2126(01)00267-2
Article
CAS
Google Scholar
Britton KL, Baker PJ, Borges KM, Engel PC, Pasquo A, Rice DW, Robb FT, Scandurra R, Stillman TJ, Yip KS: Insights into thermal stability from a comparison of the glutamate dehydrogenases from Pyrococcus furiosus and Thermococcus litoralis. Eur J Biochem 1995, 229(3):688–695. 10.1111/j.1432-1033.1995.tb20515.x
Article
CAS
Google Scholar
Corazza A, Rosano C, Pagano K, Alverdi V, Esposito G, Capanni C, Bemporad F, Plakoutsi G, Stefani M, Chiti F, Zuccotti S, Bolognesi M, Viglino P: Structure, conformational stability, and enzymatic properties of acylphosphatase from the hyperthermophile Sulfolobus solfataricus. Proteins 2006, 62(1):64–79. 10.1002/prot.20703
Article
CAS
Google Scholar
Blaber M, Lindstrom JD, Gassner N, Xu J, Heinz DW, Matthews BW: Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme. Biochemistry 1993, 32(42):11363–11373. 10.1021/bi00093a013
Article
CAS
Google Scholar
Zhu BY, Zhou NE, Kay CM, Hodges RS: Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers. Protein Sci 1993, 2(3):383–394.
Article
CAS
Google Scholar
Gromiha MM, Oobatake M, Sarai A: Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys Chem 1999, 82(1):51–67. 10.1016/S0301-4622(99)00103-9
Article
CAS
Google Scholar
Querol E, Perez-Pons JA, Mozo-Villarias A: Analysis of protein conformational characteristics related to thermostability. Protein Eng 1996, 9(3):265–271. 10.1093/protein/9.3.265
Article
CAS
Google Scholar
Cox JC, Lape J, Sayed MA, Hellinga HW: Protein fabrication automation. Protein Sci 2007, 16(3):379–390. 10.1110/ps.062591607
Article
CAS
Google Scholar
Zeng G: Sticky-end PCR: new method for subcloning. Biotechniques 1998, 25(2):206–208.
CAS
Google Scholar
Gill SC, von Hippel PH: Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 1989, 182(2):319–326. 10.1016/0003-2697(89)90602-7
Article
CAS
Google Scholar
Kabsch W: Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Cryst 1993, 26: 795–800. 10.1107/S0021889893005588
Article
CAS
Google Scholar
Collaborative Computational Project N: The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 1994, 50(Pt 5):760–763. 10.1107/S0907444994003112
Article
Google Scholar
Jones TA, Zou JY, Cowan SW, Kjeldgaard: Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 1991, 47 ( Pt 2): 110–119. 10.1107/S0108767390010224
Article
CAS
Google Scholar
Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2126–2132. 10.1107/S0907444904019158
Article
Google Scholar
Murshudov GN, Vagin AA, Dodson EJ: Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 1997, 53(Pt 3):240–255. 10.1107/S0907444996012255
Article
CAS
Google Scholar
Laskowski RA MacArthur, M.W., Moss, D.S., Thornton, J.M.: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993, 26: 283–291. 10.1107/S0021889892009944
Article
CAS
Google Scholar
Davis IW, Murray LW, Richardson JS, Richardson DC: MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res 2004, 32(Web Server issue):W615–9. 10.1093/nar/gkh398
Article
CAS
Google Scholar
Kleywegt GJ, Jones TA: Detecting folding motifs and similarities in protein structures. Methods Enzymol 1997, 277: 525–545.
Article
CAS
Google Scholar