Kaupp UB, Seifert R: Cyclic nucleotide-gated ion channels. Physiol Rev 2002, 82(3):769–824.
Article
CAS
Google Scholar
Munzel T, Feil R, Mulsch A, Lohmann SM, Hofmann F, Walter U: Physiology and pathophysiology of vascular signaling controlled by guanosine 3',5'-cyclic monophosphate-dependent protein kinase. Circulation 2003, 108(18):2172–2183.
Article
Google Scholar
Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA: Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 2003, 93(4):280–291.
Article
CAS
Google Scholar
Padayatti PS, Pattanaik P, Ma X, Akker F: Structural insights into the regulation and the activation mechanism of mammalian guanylyl cyclases. Pharmacol Therapeut 2004, 104(2):83–99.
Article
CAS
Google Scholar
Linder JU, Schultz JE: The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal 2003, 15(12):1081–1089.
Article
CAS
Google Scholar
Linder JU: Substrate selection by class III adenylyl cyclases and guanylyl cyclases. IUBMB Life 2005, 57(12):797–803.
Article
CAS
Google Scholar
Linder JU: Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation. Cell Mol Life Sci 2006, 63(15):1736–1751.
Article
CAS
Google Scholar
Wu J, Bai J, Bao Q, Zhao F: Lineage-specific domain fusion in the evolution of purine nucleotide cyclases in cyanobacteria. J Mol Evol 2008, 67(1):85–94.
Article
CAS
Google Scholar
Kuhn M: Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 2003, 93(8):700–709.
Article
CAS
Google Scholar
Denninger JW, Marletta MA: Guanylate cyclase and the •NO/cGMP signaling pathway. Biochim Biophys Acta 1999, 1411(2–3):334–350.
Article
CAS
Google Scholar
Takahashi T: Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J Gastroenterol 2003, 38(5):421–430.
Article
CAS
Google Scholar
Bredt DS: Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radical Res 1999, 31(6):577–596.
Article
CAS
Google Scholar
Dawson VL, Dawson TM: Nitric oxide in neurodegeneration. Prog Brain Res 1998, 118: 215–229.
Article
CAS
Google Scholar
Karow DS, Pan D, Davis JH, Behrends S, Mathies RA, Marletta MA: Characterization of functional heme domains from soluble guanylate cyclase. Biochemistry 2005, 44(49):16266–16274.
Article
CAS
Google Scholar
Iyer LM, Anantharaman V, Aravind L: Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. BMC Genomics 2003, 4(1):5.
Article
Google Scholar
Zhao Y, Marletta MA: Localization of the heme binding region in soluble guanylate cyclase. Biochemistry 1997, 36(50):15959–15964.
Article
CAS
Google Scholar
Wedel B, Humbert P, Harteneck C, Foerster J, Malkewitz J, Böhme E, Schultz G, Koesling D: Mutation of His-105 in the beta 1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. P Natl Acad Sci USA 1994, 91(7):2592–2596.
Article
CAS
Google Scholar
Koglin M, Behrends S: A functional domain of the alpha1 subunit of soluble guanylyl cyclase is necessary for activation of the enzyme by nitric oxide and YC-1 but is not involved in heme binding. J Biol Chem 2003, 278(14):12590–12597.
Article
CAS
Google Scholar
Zhou Z, Gross S, Roussos C, Meurer S, Muller-Esterl W, Papapetropoulos A: Structural and functional characterization of the dimerization region of soluble guanylyl cyclase. J Biol Chem 2004, 279(24):24935–24943.
Article
CAS
Google Scholar
Wedel B, Harteneck C, Foerster J, Friebe A, Schultz G, Koesling D: Functional domains of soluble guanylyl cyclase. J Biol Chem 1995, 270(42):24871–24875.
Article
CAS
Google Scholar
Winger JA, Marletta MA: Expression and characterization of the catalytic domains of soluble guanylate cyclase: Interaction with the heme domain. Biochemistry 2005, 44(10):4083–4090.
Article
CAS
Google Scholar
Ignarro LJ: Heme-dependent activation of soluble guanylate cyclase by nitric oxide: regulation of enzyme activity by porphyrins and metalloporphyrins. Semin Hematol 1989, 26(1):63–76.
CAS
Google Scholar
Chang FJ, Lemme S, Sun Q, Sunahara RK, Beuve A: NO-dependent allosteric inhibitory role of a second-nucleotide binding site in soluble guanylyl cyclase. J Biol Chem 2005, 280(12):11513–11519.
Article
CAS
Google Scholar
Ruiz-Stewart I, Tiyyagura SR, Lin JE, Kazerounian S, Pitari GM, Schulz S, Martin E, Murad F, Waldman SA: Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism. P Natl Acad Sci USA 2004, 101(1):37–42.
Article
CAS
Google Scholar
Nioche P, Berka V, Vipond J, Minton N, Tsai AL, Raman CS: Femtomolar sensitivity of a NO sensor from Clostridium botulinum. Science 2004, 306(5701):1550–1553.
Article
CAS
Google Scholar
Pellicena P, Karow DS, Boon EM, Marletta MA, Kuriyan J: Crystal structure of an oxygen binding heme domain related to soluble guanylate cyclases. P Natl Acad Sci USA 2004, 101(35):12854–12859.
Article
CAS
Google Scholar
Ma X, Sayed N, Beuve A, Akker F: NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism. EMBO J 2007, 26(2):578–588.
Article
CAS
Google Scholar
Ma X, Sayed N, Baskaran P, Beuve A, Akker F: PAS-mediated dimerization of soluble guanylyl cyclase revealed by signal transduction histidine kinase domain crystal structure. J Biol Chem 2008, 283(2):1167–1178.
Article
CAS
Google Scholar
Morton DB: Invertebrates yield a plethora of atypical guanylyl cyclases. Mol Neurobiol 2004, 29(2):97–116.
Article
CAS
Google Scholar
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, et al.: The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007, 318(5848):245–250.
Article
CAS
Google Scholar
Cheung BH, Cohen M, Rogers C, Albayram O, de Bono M: Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr Biol 2005, 15(10):905–917.
Article
CAS
Google Scholar
Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA, Bargmann CI: Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 2004, 430(6997):317–322.
Article
CAS
Google Scholar
Vermehren A, Langlais KK, Morton DB: Oxygen-sensitive guanylyl cyclases in insects and their potential roles in oxygen detection and in feeding behavoirs. J Insect Physiol 2006, 52(4):340–348.
Article
CAS
Google Scholar
Huang SH, Rio DC, Marletta MA: Ligand binding and inhibition of an oxygen-sensitive soluble guanylate cyclase, Gyc-88E, from Drosophila. Biochemistry 2007, 46(51):15115–15122.
Article
CAS
Google Scholar
Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR: Crystal structure of the catalytic domains of adenylyl cyclase in a complex with G
s
α.GTPγS. Science 1997, 278(5345):1907–1916.
Article
CAS
Google Scholar
Scott N, Hatlelid KM, MacKenzie NE, Carter DE: Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 1993, 6(1):102–106.
Article
CAS
Google Scholar
Goldgur Y, Dyda F, Hickman AB, Jenkins TM, Craigie R, Davies DR: Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. P Natl Acad Sci USA 1998, 95(16):9150–9154.
Article
CAS
Google Scholar
Raman CS, Li H, Martásek P, Král V, Masters BS, Poulos TL: Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 1998, 95(7):939–950.
Article
CAS
Google Scholar
Greenwald J, Le V, Butler SL, Bushman FD, Choe S: The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry 1999, 38(28):8892–8898.
Article
CAS
Google Scholar
Brunger AT: Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992, 355(6359):472–475.
Article
CAS
Google Scholar
Zhang G, Liu Y, Ruoho AE, Hurley JH: Structure of the adenylyl cyclase catalytic core. Nature 1997, 386(6622):247–253.
Article
CAS
Google Scholar
Artymiuk PJ, Poirrette AR, Rice DW, Willett P: A polymerase I palm in adenylyl cyclase? Nature 1997, 388(6637):33–34.
Article
CAS
Google Scholar
Murzin AG: How far divergent evolution goes in proteins. Curr Opin Struc Biol 1998, 8(3):380–387.
Article
CAS
Google Scholar
Pei J, Grishin NV: GGDEF domain is homologous to adenylyl cyclase. Proteins 2001, 42(2):210–216.
Article
CAS
Google Scholar
Holm L, Sander C: Mapping the protein universe. Science 1996, 273(5275):595–602.
Article
CAS
Google Scholar
Hurley JH: Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem 1999, 274(12):7599–7602.
Article
CAS
Google Scholar
Sunahara RK, Beuve A, Tesmer JJ, Sprang SR, Garbers DL, Gilman AG: Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem 1998, 273(26):16332–16338.
Article
CAS
Google Scholar
Tucker CL, Hurley JH, Miller TR, Hurley JB: Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. P Natl Acad Sci USA 1998, 95(11):5993–5997.
Article
CAS
Google Scholar
Tesmer JJ, Sunahara RK, Johnson RA, Gosselin G, Gilman AG, Sprang SR: Two-metal-Ion catalysis in adenylyl cyclase. Science 1999, 285(5428):756–760.
Article
CAS
Google Scholar
Liu Y, Ruoho AE, Rao VD, Hurley JH: Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. P Natl Acad Sci USA 1997, 94(25):13414–13419.
Article
CAS
Google Scholar
Gazzano H, Wu HI, Waldman SA: Activation of particulate guanylate cyclase by Escherichia coli heat-stable enterotoxin is regulated by adenine nucleotides. Infect Immun 1991, 59(4):1552–1557.
CAS
Google Scholar
Ivanova K, Heim JM, Gerzer R: Kinetic characterization of atrial natriuretic factor-sensitive particulate guanylate cyclase. Eur J Pharmacol 1990, 189(4–5):317–326.
Article
CAS
Google Scholar
Chrisman TD, Garbers DL, Parks MA, Hardman JG: Characterization of particulate and soluble guanylate cyclases from rat lung. J Biol Chem 1975, 250(2):374–381.
CAS
Google Scholar
Shenoy AR, Srinivasan N, Subramaniam M, Visweswariah SS: Mutational analysis of the Mycobacterium tuberculosis Rv1625c adenylyl cyclase: residues that confer nucleotide specificity contribute to dimerization. FEBS Lett 2003, 545(2–3):253–259.
Article
CAS
Google Scholar
Sinha SC, Wetterer M, Sprang SR, Schultz JE, Linder JU: Origin of asymmetry in adenylyl cyclases: structures of Mycobacterium tuberculosis Rv1900c. EMBO J 2005, 24(4):663–673.
Article
CAS
Google Scholar
The Chlamydomonas Center[http://www.chlamy.org/]
Leslie AGW: Recent changes to the MOSFLM package for processing film and image plate data. In Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography. Volume 26. Edited by: Warrington LD. UK; 1992.
Google Scholar
The CCP4 suite: programs for protein crystallography. Acta Crystallogr D 1994, 50(Pt 5):760–763.
Google Scholar
McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ: Likelihood-enhanced fast translation functions. Acta Crystallogr D 2005, 61: 458–464.
Article
Google Scholar
Perrakis A, Morris R, Lamzin VS: Automated protein model building combined with iterative structure refinement. Nat Struct Biol 1999, 6(5):458–463.
Article
CAS
Google Scholar
Terwilliger TC: Maximum-likelihood density modification. Acta Crystallogr D 2000, 56(Pt 8):965–972.
Article
CAS
Google Scholar
Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D 2004, 60: 2126–2132.
Article
Google Scholar
Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC: PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D 2002, 58: 1948–1954.
Article
Google Scholar
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, et al.: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007, (35 Web Server):W375–383.
Google Scholar
The PyMOL Molecular Graphics System[http://www.pymol.org]
Winger JA, Derbyshire ER, Marletta MA: Dissociation of nitric oxide from soluble guanylate cyclase and heme-nitric oxide/oxygen binding domain constructs. J Biol Chem 2007, 282(2):897–907.
Article
CAS
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947–2948.
Article
CAS
Google Scholar
Gouet P, Courcelle E, Stuart DI, Metoz F: ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 1999, 15(4):305–308.
Article
CAS
Google Scholar