Sawyers CL: Chronic myeloid leukemia. N Engl J Med 1999, 340(17):1330–1340.
Article
CAS
PubMed
Google Scholar
Lugo TG, Pendergast AM, Muller AJ, Witte ON: Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990, 247(4946):1079–1082.
Article
CAS
PubMed
Google Scholar
Sawyers CL: Molecular consequences of the BCR-ABL translocation in chronic myelogenous leukemia. Leukemia Lymphoma 1993, 11(Suppl 2):101–103.
Article
PubMed
Google Scholar
Deininger M, Buchdunger E, Druker BJ: The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005, 105(7):2640–2653.
Article
CAS
PubMed
Google Scholar
Hantschel O, Rix U, Superti-Furga G: Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leukemia Lymphoma 2008, 49(4):615–619.
Article
CAS
PubMed
Google Scholar
Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, Clarkson B, Kuriyan J: Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res 2002, 62(15):4236–4243.
CAS
PubMed
Google Scholar
Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, Clarkson B, Superti-Furga G, Kuriyan J: Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 2003, 112(6):859–871.
Article
CAS
PubMed
Google Scholar
Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J: Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000, 289(5486):1938–1942.
Article
CAS
PubMed
Google Scholar
Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB: Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000, 295(1):139–145.
CAS
PubMed
Google Scholar
Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, Snell GP, Zou H, Sang BC, Wilson KP: Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 2004, 279(30):31655–31663.
Article
CAS
PubMed
Google Scholar
Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ, Chase A, Chessells JM, Colombat M, Dearden CE, et al.: Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 2002, 347(7):481–487.
Article
CAS
PubMed
Google Scholar
Demetri GD, von Mehren M, Blanke CD, Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, et al.: Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002, 347(7):472–480.
Article
CAS
PubMed
Google Scholar
Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M: Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001, 344(14):1038–1042.
Article
CAS
PubMed
Google Scholar
Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, et al.: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001, 344(14):1031–1037.
Article
CAS
PubMed
Google Scholar
Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, et al.: Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006, 355(23):2408–2417.
Article
CAS
PubMed
Google Scholar
Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001, 293(5531):876–880.
Article
CAS
PubMed
Google Scholar
Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL: Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002, 2(2):117–125.
Article
CAS
PubMed
Google Scholar
Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, et al.: Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005, 7(2):129–141.
Article
CAS
PubMed
Google Scholar
Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B, Tanaka C, Manley P, Rae P, Mietlowski W, et al.: Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006, 354(24):2542–2551.
Article
PubMed
Google Scholar
Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LA, Das J, Doweyko AM, et al.: Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 2004, 47(27):6658–6661.
Article
CAS
PubMed
Google Scholar
Rix U, Hantschel O, Durnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, Kaupe I, Bennett KL, Valent P, Colinge J, et al.: Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 2007, 110(12):4055–4063.
Article
CAS
PubMed
Google Scholar
Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, et al.: Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007, 25(9):1035–1044.
Article
CAS
PubMed
Google Scholar
Celli CM, Tran N, Knox R, Jaiswal AK: NRH:quinone oxidoreductase 2 (NQO2) catalyzes metabolic activation of quinones and anti-tumor drugs. Biochem Pharmacol 2006, 72(3):366.
Article
CAS
PubMed
Google Scholar
Gong X, Gutala R, Jaiswal AK: Quinone Oxidoreductases and Vitamin K Metabolism. In Vitam Horm. Volume 78. Edited by: Litwack G. Academic Press; 2008:85–101.
Google Scholar
Vella F, Ferry G, Delagrange P, Boutin JA: NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem Pharmacol 2005, 71(1–2):1–12.
Article
CAS
PubMed
Google Scholar
Buryanovskyy L, Fu Y, Boyd M, Ma Y, Hsieh TC, Wu JM, Zhang Z: Crystal structure of quinone reductase 2 in complex with resveratrol. Biochemistry 2004, 43(36):11417–11426.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gambacorti-Passerini C, Zucchetti M, Russo D, Frapolli R, Verga M, Bungaro S, Tornaghi L, Rossi F, Pioltelli P, Pogliani E, et al.: Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res 2003, 9(2):625–632.
CAS
PubMed
Google Scholar
Wu K, Knox R, Sun XZ, Joseph P, Jaiswal AK, Zhang D, Deng PS, Chen S: Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase. Arch Biochem Biophys 1997, 347(2):221–228.
Article
CAS
PubMed
Google Scholar
Palfey BA, Massey V: Flavin-Dependent Enzymes. In Comprehensive biological catalysis: a mechanistic reference. Volume 3. Edited by: Sinnott M. San Diego: Academic Press; 1998:83–154.
Google Scholar
Whitby LG: A new method for preparing flavin-adenine dinucleotide. Biochem J 1953, 54(3):437–442.
Article
PubMed Central
CAS
PubMed
Google Scholar
Foster CE, Bianchet MA, Talalay P, Zhao Q, Amzel LM: Crystal structure of human quinone reductase type 2, a metalloflavoprotein. Biochemistry 1999, 38(31):9881–9886.
Article
CAS
PubMed
Google Scholar
Brunger AT: Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 1992, 355(6359):472–475.
Article
CAS
PubMed
Google Scholar
Zhao Q, Yang XL, Holtzclaw WD, Talalay P: Unexpected genetic and structural relationships of a long-forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase). P Natl Acad Sci U S A 1997, 94(5):1669–1674.
Article
CAS
Google Scholar
AbuKhader M, Heap J, De Matteis C, Kellam B, Doughty SW, Minton N, Paoli M: Binding of the anticancer prodrug CB1954 to the activating enzyme NQO2 revealed by the crystal structure of their complex. J Med Chem 2005, 48(24):7714–7719.
Article
CAS
PubMed
Google Scholar
Calamini B, Santarsiero BD, Boutin JA, Mesecar AD: Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2. Biochem J 2008, 413(1):81–91.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu Y, Buryanovskyy L, Zhang Z: Crystal structure of quinone reductase 2 in complex with cancer prodrug CB1954. Biochem Biophys Res Commun 2005, 336(1):332–338.
Article
CAS
PubMed
Google Scholar
Fu Y, Buryanovskyy L, Zhang Z: Quinone reductase 2 is a catechol quinone reductase. J Biol Chem 2008, 283(35):23829–23835.
Article
PubMed Central
CAS
PubMed
Google Scholar
Faig M, Bianchet MA, Talalay P, Chen S, Winski S, Ross D, Amzel LM: Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Proc Natl Acad Sci U S A 2000, 97(7):3177–3182.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liao S, Dulaney JT, Williams-Ashman HG: Purification and properties of a flavoprotein catalyzing the oxidation of reduced ribosyl nicotinamide. J Biol Chem 1962, 237(9):2981–2987.
CAS
PubMed
Google Scholar
Cowan-Jacob SW, Fendrich G, Floersheimer A, Furet P, Liebetanz J, Rummel G, Rheinberger P, Centeleghe M, Fabbro D, Manley PW: Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr D 2007, 63(Pt 1):80–93.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jacobs M, Caron P, Hare B: Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex. Proteins 2008, 70(4):1451–1460.
Article
CAS
PubMed
Google Scholar
Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J: c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Structure 2007, 15(3):299–311.
Article
CAS
PubMed
Google Scholar
Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, et al.: Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005, 7(2):129–141.
Article
CAS
PubMed
Google Scholar
Atwell S, Adams JM, Badger J, Buchanan MD, Feil IK, Froning KJ, Gao X, Hendle J, Keegan K, Leon BC, et al.: A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. J Biol Chem 2004, 279(53):55827–55832.
Article
CAS
PubMed
Google Scholar
Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T: The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Structure 2005, 13(6):861–871.
Article
CAS
PubMed
Google Scholar
Long DJ 2nd, Iskander K, Gaikwad A, Arin M, Roop DR, Knox R, Barrios R, Jaiswal AK: Disruption of dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity. J Biol Chem 2002, 277(48):46131–46139.
Article
CAS
PubMed
Google Scholar
Iskander K, Paquet M, Brayton C, Jaiswal AK: Deficiency of NRH:quinone oxidoreductase 2 increases susceptibility to 7,12-dimethylbenz(a)anthracene and benzo(a)pyrene-induced skin carcinogenesis. Cancer Res 2004, 64(17):5925–5928.
Article
CAS
PubMed
Google Scholar
Pilot PR, Sablinska K, Owen S, Hatfield A: Epidemiological analysis of second primary malignancies in more than 9500 patients treated with imatinib. Leukemia 2006, 20(1):148. author reply 149
Article
CAS
PubMed
Google Scholar
Hochhaus A, Druker B, Sawyers C, Guilhot F, Schiffer CA, Cortes J, Niederwieser DW, Gambacorti-Passerini C, Stone RM, Goldman J, et al.: Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-alpha treatment. Blood 2008, 111(3):1039–1043.
Article
CAS
PubMed
Google Scholar
Leslie AGW: Recent changes to the MOSFLM package for processing film and image plate data. In Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography. Volume 26. Warrington LD, UK; 1992.
Google Scholar
The CCP4 suite: programs for protein crystallography Acta Crystallogr D 1994, 50(Pt 5):760–763.
McCoy AJ, Grosse-Kunstleve RW, Storoni LC, Read RJ: Likelihood-enhanced fast translation functions. Acta Crystallogr D 2005, 61: 458–464.
Article
PubMed
Google Scholar
Perrakis A, Morris R, Lamzin VS: Automated protein model building combined with iterative structure refinement. Nat Struct Biol 1999, 6(5):458–463.
Article
CAS
PubMed
Google Scholar
Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D 2004, 60: 2126–2132.
Article
PubMed
Google Scholar
Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC: PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D 2002, 58: 1948–1954.
Article
PubMed
Google Scholar
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, et al.: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007, (35 Web Server):W375–383.
Google Scholar
The PyMOL Molecular Graphics System[http://pymol.sourceforge.net/]