Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes; a parallel-group study. Lancet. 2002;359:824–30.
Article
CAS
PubMed
Google Scholar
Kim D, Wang L, Beconi M, Eiermann GJ, Fisher MH, He H, et al. (2R)-4-oxo-4-[3-(trifluoromethyl) -5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2005;48(1):141–51.
Article
CAS
PubMed
Google Scholar
Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91(1):301–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim HM, Lim JS, Lee BW, Kang ES, Lee HC, Cha BS. Optimal candidates for the switch from glimepiride to sitagliptin to reduce hypoglycemia in patients with type 2 diabetes mellitus. Endocrinol Metab (Seoul). 2015;30(1):84–91.
Article
Google Scholar
Schmidt WE, Siegel EG, Creutzfeldt W. Glucagon-like peptide-1 but not glucagon-like peptide-2 stimulates insulin release from isolated rat pancreatic islets. Diabetologia. 1985;28(9):704–7.
Article
CAS
PubMed
Google Scholar
Shima K, Hirota M, Ohboshi C. Effect of glucagon-like peptide-1 on insulin secretion. Regul Pept. 1988;22(3):245–52.
Article
CAS
PubMed
Google Scholar
Ahrén B, Schmitz O. GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm Metab Res. 2004;36(11–12):867–76.
Article
PubMed
Google Scholar
Hermansen K, Bækdal TA, Düring M, Pietraszek A, Mortensen LS, Jørgensen H, et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial. Diabetes Obes Metab. 2013;15(11):1040–8.
Article
CAS
PubMed
Google Scholar
Kothare PA, Linnebjerg H, Isaka Y, Uenaka K, Yamamura A, Yeo KP, et al. Pharmacokinetics, pharmacodynamics, tolerability, and safety of exenatide in Japanese patients with type 2 diabetes mellitus. J Clin Pharmacol. 2008;48(12):1389–99.
Article
CAS
PubMed
Google Scholar
Petersen AB, Knop FK, Christensen M. Lixisenatide for the treatment of type 2 diabetes. Drugs Today (Barc). 2013;49(9):537–53.
Article
CAS
Google Scholar
Cunningham DF, O’Connor B. Proline specific peptidases. Biochim Biophys Acta. 1997;1343(2):160–86.
Article
CAS
PubMed
Google Scholar
Brandt I, Joossens J, Chen X, Maes MB, Scharpé S, De Meester I, et al. Inhibition of dipeptidyl-peptidase IV catalyzed peptide truncation by Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile). Biochem Pharmacol. 2005;70(1):134–43.
Article
CAS
PubMed
Google Scholar
Nabeno M, Akahoshi F, Kishida H, Miyaguchi I, Tanaka Y, Ishii S, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun. 2013;434(2):191–6.
Article
CAS
PubMed
Google Scholar
Feng J, Zhang Z, Wallace MB, Stafford JA, Kaldor SW, Kassel DB, et al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem. 2007;50(10):2297–300.
Article
CAS
PubMed
Google Scholar
Zhang Z, Wallace MB, Feng J, Stafford JA, Skene RJ, Shi L, et al. Design and synthesis of pyrimidinone and pyrimidinedione inhibitors of dipeptidyl peptidase IV. J Med Chem. 2011;54(2):510–24.
Article
CAS
PubMed
Google Scholar
Eckhardt M, Langkopf E, Mark M, Tadayyon M, Thomas L, Nar H, et al. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem. 2007;50(26):6450–3.
Article
CAS
PubMed
Google Scholar
Watanabe YS, Yasuda Y, Kojima Y, Okada S, Motoyama T, Takahashi R, et al. Anagliptin, a potent dipeptidyl peptidase IV inhibitor: its single-crystal structure and enzyme interactions. J Enzyme Inhib Med Chem. 2015;30(6):981–8.
Article
CAS
PubMed
Google Scholar
Kato N, Oka M, Murase T, Yoshida M, Sakairi M, Yamashita S, et al. Discovery and pharmacological characterization of N-[2-({2-[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}amino)-2-methylpropyl]-2-methylpyrazolo[1,5-a]pyrimidine-6-carboxamide hydrochloride (anagliptin hydrochloride salt) as a potent and selective DPP-IV inhibitor. Bioorg Med Chem. 2011;19(23):7221–7.
Article
CAS
PubMed
Google Scholar
Yoshida T, Akahoshi F, Sakashita H, Kitajima H, Nakamura M, Sonda S, et al. Discovery and preclinical profile of teneligliptin (3-[(2S,4S)-4-[4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-ylcarbonyl]thiazolidine): a highly potent, selective, long-lasting and orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem. 2012;20(19):5705–19.
Article
CAS
PubMed
Google Scholar
Metzler WJ, Yanchunas J, Weigelt C, Kish K, Klei HE, Xie D, et al. Involvement of DPP-IV catalytic residues in enzyme-saxagliptin complex formation. Protein Sci. 2008;17(2):240–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKeage K. Trelagliptin: First global approval. Drugs. 2015;75(10):1161–4.
Article
CAS
PubMed
Google Scholar
Biftu T, Sinha-Roy R, Chen P, Qian X, Feng D, Kuethe JT, et al. Omarigliptin (MK-3102): a novel long-acting DPP-4 inhibitor for once-weekly treatment of type 2 diabetes. J Med Chem. 2014;57(8):3205–12.
Article
CAS
PubMed
Google Scholar
Kawabata T. Build-up algorithm for atomic correspondence between chemical structures. J Chem Info Model. 2011;51(8):1775–87. http://strcomp.protein.osaka-u.ac.jp/kcombu/. Accessed 28 May 2105.
Article
CAS
Google Scholar
Chen X, Liu M, Gilson MK. BindingDB: a web-accessible molecular recognition database. Comb Chem High Throughput Screen. 2001;4(8):719–25. https://www.bindingdb.org/bind/index.jsp. Accessed 11 June 2016.
Article
CAS
PubMed
Google Scholar
Wang R, Fang X, Lu Y, Wang S. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J Med Chem. 2004;47(12):2977–80. http://www.pdbbind.org.cn/. Accessed 11 June 2016.
Article
CAS
PubMed
Google Scholar
Hiramatsu H, Kyono K, Higashiyama Y, Fukushima C, Shima H, Sugiyama S, et al. The structure and function of human dipeptidyl peptidase IV, possessing a unique eight-bladed beta-propeller fold. Biochem Biophys Res Commun. 2003;302(4):849–54.
Article
CAS
PubMed
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grell L, Parkin C, Slatest L, Craig PA. EZ-Viz, A tool for simplifying molecular viewing in PyMOL. Biochem Mol Biol Educ. 2006;34(6):402–7.
Article
CAS
PubMed
Google Scholar
Fraczkiewicz R, Braun W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comp Chem. 1998;19:319–33. http://curie.utmb.edu/getarea.html. Accessed 15 January 2016.
Article
CAS
Google Scholar
Sutton JM, Clark DE, Dunsdon SJ, Fenton G, Fillmore A, Harris NV, et al. Novel heterocyclic DPP-4 inhibitors for the treatment of type 2 diabetes. Bioorg Med Chem Lett. 2012;22(3):1464–8.
Article
CAS
PubMed
Google Scholar
Keedy DA, van den Bedem H, Sivak DA, Petsko GA, Ringe D, Wilson MA, et al. Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. Structure. 2014;22(6):899–910.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheehan SM, Mest HJ, Watson BM, Klimkowski VJ, Timm DE, Cauvin A, et al. Discovery of non-covalent dipeptidyl peptidase IV inhibitors which induce a conformational change in the active site. Bioorg Med Chem Lett. 2007;17(6):1765–8.
Article
CAS
PubMed
Google Scholar
Pei Z, Li X, Longenecker K, von Geldern TW, Wiedeman PE, Lubben TH, et al. Discovery, structure-activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors. J Med Chem. 2006;49(12):3520–35.
Article
CAS
PubMed
Google Scholar
Xu J, Wei L, Mathvink R, Edmondson SD, Mastracchio A, Eiermann GJ, et al. Discovery of potent, selective, and orally bioavailable pyridone-based dipeptidyl peptidase-4 inhibitors. Bioorg Med Chem Lett. 2006;16(5):1346–9.
Article
CAS
PubMed
Google Scholar
Edmondson SD, Wei L, Xu J, Shang J, Xu S, Pang J, et al. Fluoroolefins as amide bond mimics in dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett. 2008;18(7):2409–13.
Article
CAS
PubMed
Google Scholar
Wallace MB, Feng J, Zhang Z, Skene RJ, Shi L, Caster CL, et al. Structure-based design and synthesis of benzimidazole derivatives as dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett. 2008;18(7):2362–7.
Article
CAS
PubMed
Google Scholar
Boehringer M, Fischer H, Hennig M, Hunziker D, Huwyler J, Kuhn B, et al. Aryl- and heteroaryl-substituted aminobenzo[a]quinolizines as dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett. 2010;20(3):1106–8.
Article
CAS
PubMed
Google Scholar
Wang W, Devasthale P, Wang A, Harrity T, Egan D, Morgan N, et al. 7-Oxopyrrolopyridine-derived DPP4 inhibitors-mitigation of CYP and hERG liabilities via introduction of polar functionalities in the active site. Bioorg Med Chem Lett. 2011;21(22):6646–51.
Article
CAS
PubMed
Google Scholar
Lam B, Zhang Z, Stafford JA, Skene RJ, Shi L, Gwaltney 2nd SL. Structure-based design of pyridopyrimidinediones as dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett. 2012;22(21):6628–31.
Article
CAS
PubMed
Google Scholar
Edmondson SD, Mastracchio A, Mathvink RJ, He J, Harper B, Park YJ, et al. (2S,3S)-3-Amino-4-(3,3-difluoropyrrolidin-1-yl)-N, N-dimethyl-4-oxo-2-(4-[1,2,4]triazolo[1,5-a]-pyridin-6-ylphenyl)butanamide: a selective alpha-amino amide dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2006;49(12):3614–27.
Article
CAS
PubMed
Google Scholar
Liang GB, Qian X, Biftu T, Singh S, Gao YD, Scapin G, et al. Discovery of new binding elements in DPP-4 inhibition and their applications in novel DPP-4 inhibitor design. Bioorg Med Chem Lett. 2008;18(13):3706–10.
Article
CAS
PubMed
Google Scholar
Qiao L, Baumann CA, Crysler CS, Ninan NS, Abad MC, Spurlino JC, et al. Discovery, SAR, and X-ray structure of novel biaryl-based dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett. 2006;16(1):123–8.
Article
CAS
PubMed
Google Scholar
Madar DJ, Kopecka H, Pireh D, Yong H, Pei Z, Li X, et al. Discovery of 2-[4-{{2-(2S,5R)-2-cyano-5-ethynyl-1-pyrrolidinyl]-2-oxoethyl]amino]- 4-methyl-1-piperidinyl]-4-pyridinecarboxylic acid (ABT-279): a very potent, selective, effective, and well-tolerated inhibitor of dipeptidyl peptidase-IV, useful for the treatment of diabetes. J Med Chem. 2006;49(21):6416–20.
Article
CAS
PubMed
Google Scholar
Asakura M, Fujii H, Atsuda K, Itoh T, Fujiwara R. Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver. Drug Metab Dispos. 2015;43(4):477–84.
Article
CAS
PubMed
Google Scholar
Biftu T, Scapin G, Singh S, Feng D, Becker JW, Eiermann G, et al. Rational design of a novel, potent, and orally bioavailable cyclohexylamine DPP-4 inhibitor by application of molecular modeling and X-ray crystallography of sitagliptin. Bioorg Med Chem Lett. 2007;17(12):3384–7.
Article
CAS
PubMed
Google Scholar
Peters JU, Weber S, Kritter S, Weiss P, Wallier A, Boehringer M, et al. Aminomethylpyrimidines as novel DPP-IV inhibitors: a 10(5)-fold activity increase by optimization of aromatic substituents. Bioorg Med Chem Lett. 2004;14(6):1491–3.
Article
CAS
PubMed
Google Scholar
Nordhoff S, Cerezo-Gálvez S, Feurer A, Hill O, Matassa VG, Metz G. The reversed binding of beta-phenethylamine inhibitors of DPP-IV: X-ray structures and properties of novel fragment and elaborated inhibitors. Bioorg Med Chem Lett. 2006;16(6):1744–8.
Article
CAS
PubMed
Google Scholar
Pei Z, Li X, von Geldern TW, Madar DJ, Longenecker K, Yong H, et al. Discovery of ((4R,5S)-5-amino-4-(2,4,5- trifluorophenyl)cyclohex-1-enyl)-(3- (trifluoromethyl)-5,6-dihydro- [1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanone (ABT-341), a highly potent, selective, orally efficacious, and safe dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem. 2006;49(22):6439–42.
Article
CAS
PubMed
Google Scholar
Biftu T, Feng D, Qian X, Liang GB, Kieczykowski G, Eiermann G. (3R)-4-[(3R)-3-Amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(2,2,2-trifluoroethyl)-1,4-diazepan-2-one, a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem Lett. 2007;17(1):49–52.
Article
CAS
PubMed
Google Scholar
Lübbers T, Böhringer M, Gobbi L, Hennig M, Hunziker D, Kuhn B, et al. 1,3-disubstituted 4-aminopiperidines as useful tools in the optimization of the 2-aminobenzo[a]quinolizine dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett. 2007;17(11):2966–70.
Article
PubMed
Google Scholar
Backes BJ, Longenecker K, Hamilton GL, Stewart K, Lai C, Kopecka H, et al. Pyrrolidine-constrained phenethylamines: The design of potent, selective, and pharmacologically efficacious dipeptidyl peptidase IV (DPP4) inhibitors from a lead-like screening hit. Bioorg Med Chem Lett. 2007;17(7):2005–12.
Article
CAS
PubMed
Google Scholar
Duffy JL, Kirk BA, Wang L, Eiermann GJ, He H, Leiting B, et al. 4-aminophenylalanine and 4-aminocyclohexylalanine derivatives as potent, selective, and orally bioavailable inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett. 2007;17(10):2879–85.
Article
CAS
PubMed
Google Scholar
Pei Z, Li X, von Geldern TW, Longenecker K, Pireh D, Stewart KD, et al. Discovery and structure-activity relationships of piperidinone- and piperidine-constrained phenethylamines as novel, potent, and selective dipeptidyl peptidase IV inhibitors. J Med Chem. 2007;50(8):1983–7.
Article
CAS
PubMed
Google Scholar
Wright SW, Ammirati MJ, Andrews KM, Brodeur AM, Danley DE, Doran SD, et al. (3R,4S)-4-(2,4,5-Trifluorophenyl)-pyrrolidin-3-ylamine inhibitors of dipeptidyl peptidase IV: synthesis, in vitro, in vivo, and X-ray crystallographic characterization. Bioorg Med Chem Lett. 2007;17(20):5638–42.
Article
CAS
PubMed
Google Scholar
Kowalchick JE, Leiting B, Pryor KD, Marsilio F, Wu JK, He H, et al. Design, synthesis, and biological evaluation of triazolopiperazine-based beta-amino amides as potent, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. Bioorg Med Chem Lett. 2007;17(21):5934–9.
Article
CAS
PubMed
Google Scholar
Kaelin DE1, Smenton AL, Eiermann GJ, He H, Leiting B, Lyons KA, et al. 4-arylcyclohexylalanine analogs as potent, selective, and orally active inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett. 2007;17(21):5806–11.
Article
CAS
PubMed
Google Scholar
Ammirati MJ, Andrews KM, Boyer DD, Brodeur AM, Danley DE, Doran SD, et al. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: a potent, selective, orally active dipeptidyl peptidase IV inhibitor. Bioorg Med Chem Lett. 2009;19(7):1991–5.
Article
CAS
PubMed
Google Scholar
Mattei P, Boehringer M, Di Giorgio P, Fischer H, Hennig M, Huwyler J, et al. Discovery of carmegliptin: a potent and long-acting dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem Lett. 2010;20(3):1109–13.
Article
CAS
PubMed
Google Scholar
Miyamoto Y, Banno Y, Yamashita T, Fujimoto T, Oi S, Moritoh Y, et al. Discovery of a 3-pyridylacetic acid derivative (TAK-100) as a potent, selective and orally active dipeptidyl peptidase IV (DPP-4) inhibitor. J Med Chem. 2011;54(3):831–50.
Article
CAS
PubMed
Google Scholar
Banno Y, Miyamoto Y, Sasaki M, Oi S, Asakawa T, Kataoka O, et al. Identification of 3-aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones: a new class of potent, selective, and orally active non-peptide dipeptidyl peptidase IV inhibitors that form a unique interaction with Lys554. Bioorg Med Chem. 2011;19(16):4953–70.
Article
CAS
PubMed
Google Scholar
Devasthale P, Wang Y, Wang W, Fevig J, Feng J, Wang A, et al. Optimization of activity, selectivity, and liability profiles in 5-oxopyrrolopyridine DPP4 inhibitors leading to clinical candidate (Sa)-2-(3-(aminomethyl)-4-(2,4-dichlorophenyl)-2-methyl-5-oxo-5H-pyrrolo[3,4-b]pyridin-6(7H)-yl)-N,N-dimethylacetamide (BMS-767778). J Med Chem. 2013;56(18):7343–57.
Article
CAS
PubMed
Google Scholar
Thoma R, Löffler B, Stihle M, Huber W, Ruf A, Hennig M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure. 2003;11(8):947–59.
Article
CAS
PubMed
Google Scholar
Ahn JH, Shin MS, Jun MA, Jung SH, Kang SK, Kim KR, et al. Synthesis, biological evaluation and structural determination of beta-aminoacyl-containing cyclic hydrazine derivatives as dipeptidyl peptidase IV (DPP-IV) inhibitors. Bioorg Med Chem Lett. 2007;17(9):2622–8.
Article
CAS
PubMed
Google Scholar
Edmondson SD, Mastracchio A, Cox JM, Eiermann GJ, He H, Lyons KA, et al. Aminopiperidine-fused imidazoles as dipeptidyl peptidase-IV inhibitors. Bioorg Med Chem Lett. 2009;19(15):4097–101.
Article
CAS
PubMed
Google Scholar
Blake PR, Day MW, Hsu BT, Joshua-Tor L, Park JB, Hare DR, et al. Comparison of the X-ray structure of native rubredoxin from Pyrococcus furiosus with the NMR structure of the zinc-substituted protein. Protein Sci. 1992;11:1522–5.
Article
Google Scholar
Braun W, Vasák M, Robbins AH, Stout CD, Wagner G, Kägi JH, et al. Comparison of the NMR solution structure and the x-ray crystal structure of rat metallothionein-2. Proc Natl Acad Sci U S A. 1992;89(21):10124–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li A, Daggett V. Investigation of the solution structure of chymotrypsin inhibitor 2 using molecular dynamics: comparison to x-ray crystallographic and NMR data. Protein Eng. 1995;8(11):1117–28.
Article
CAS
PubMed
Google Scholar
Blanco FJ, Ortiz AR, Serrano L. 1H and 15 N NMR assignment and solution structure of the SH3 domain of spectrin: comparison of unrefined and refined structure sets with the crystal structure. J Biomol NMR. 1997;9(4):347–57.
Article
CAS
PubMed
Google Scholar
Sumikawa H, Suzuki E. Tertiary structural models of human interleukin-6 and evaluation by comparison with X-ray and NMR structures. Chem Pharm Bull (Tokyo). 1998;46(1):136–8.
Article
CAS
Google Scholar
Nicotra M, Paci M, Sette M, Oakley AJ, Parker MW, Lo Bello M, et al. Solution structure of glutathione bound to human glutathione transferase P1-1: comparison of NMR measurements with the crystal structure. Biochemistry. 1998;37(9):3020–7.
Article
CAS
PubMed
Google Scholar
Gomar J, Sodano P, Sy D, Shin DH, Lee JY, Suh SW, et al. Comparison of solution and crystal structures of maize nonspecific lipid transfer protein: a model for a potential in vivo lipid carrier protein. Proteins. 1998;31(2):160–71.
Article
CAS
PubMed
Google Scholar
Fraenkel E, Pabo CO. Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex. Nat Struct Biol. 1998;5(8):692–7.
Article
CAS
PubMed
Google Scholar
Lu J, Lin CL, Tang C, Ponder JW, Kao JL, Cistola DP, et al. The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure. J Mol Biol. 1999;286(4):1179–95.
Article
CAS
PubMed
Google Scholar
Philippopoulos M, Lim C. Exploring the dynamic information content of a protein NMR structure: comparison of a molecular dynamics simulation with the NMR and X-ray structures of Escherichia coli ribonuclease HI. Proteins. 1999;36(1):87–110.
Article
CAS
PubMed
Google Scholar
Haliloglu T, Bahar I. Structure-based analysis of protein dynamics: comparison of theoretical results for hen lysozyme with X-ray diffraction and NMR relaxation data. Proteins. 1999;37(4):654–67.
Article
CAS
PubMed
Google Scholar
Kuser PR, Franzoni L, Ferrari E, Spisni A, Polikarpov I. The X-ray structure of a recombinant major urinary protein at 1.75 A resolution. A comparative study of X-ray and NMR-derived structures. Acta Crystallogr D Biol Crystallogr. 2001;57(Pt 12):1863–9.
Article
CAS
PubMed
Google Scholar
Kowalski JA, Liu K, Kelly JW. NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1. Biopolymers. 2002;63(2):111–21.
Article
CAS
PubMed
Google Scholar
Higo J, Nakasako M. Hydration structure of human lysozyme investigated by molecular dynamics simulation and cryogenic X-ray crystal structure analyses: on the correlation between crystal water sites, solvent density, and solvent dipole. J Comput Chem. 2002;23(14):1323–36.
Article
CAS
PubMed
Google Scholar
Chakraborty C, Hsu MJ, Agoramoorthy G. Understanding the molecular dynamics of type-2 diabetes drug target DPP-4 and its interaction with sitagliptin and inhibitor diprotin-A. Cell Biochem Biophys. 2014;70(2):907–22.
Article
CAS
PubMed
Google Scholar
Gu Y, Wang W, Zhu X, Dong K. Molecular dynamic simulations reveal the mechanism of binding between xanthine inhibitors and DPP-4. J Mol Model. 2014;20(2):2075.
Article
PubMed
Google Scholar