Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Rev Infect Dis. 1940;10:677–8.
Google Scholar
World Health Organization (WHO). Antimicrobial resistance: global report on surveillance. Geneva: WHO Press; 2014.
Google Scholar
King DT, Sobhanifar S, Strynadka NCJ. One ring to rule them all: current trends in combating bacterial resistance to β-lactams. Protein Sci. 2016;25:787–803.
Article
CAS
Google Scholar
Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol. 2010;13:558–64.
Article
CAS
Google Scholar
Salahuddin P, Kumar A, Khan AU. Structure, function of serine and metallo-β-lactamases and their inhibitors. Curr Protein Pept Sci. 2018;19:130–44.
CAS
PubMed
Google Scholar
Reading C, Cole M. Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother. 1977;11:852–7.
Article
CAS
Google Scholar
De Rosa M, Zanfardino A, Notomista E, Wichelhaus TA, Saturnino C, Varcamonti M, Soriente A. Novel promising linezolid analogues: Rational design, synthesis and biological evaluation. Eur J Med Chem. 2013;69:779–85.
De Rosa M, Vigliotta G, Palma G, Saturnino C, Soriente A. Novel penicillin-type analogues bearing a variable substituted 2-azetidinone ring at position 6: synthesis and biological evaluation. Molecules. 2015;20:22044–57.
Article
CAS
Google Scholar
Verdino A, Vigliotta G, Giordano D, Caputo I, Soriente A, De Rosa M, Marabotti A. Synthesis and biological evaluation of the progenitor of a new class of cephalosporin analogues, with a particular focus on structure-based computational analysis. PLoS One. 2017;12:e0181563.
Article
Google Scholar
Herzberg O. Refined crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.0 Å resolution. J Mol Biol. 1991;217:701–19.
Article
CAS
Google Scholar
Fonzé E, Charlier P, To'th Y, Vermeire M, Raquet X, Dubus A, Frère JM. TEM1 beta-lactamase structure solved by molecular replacement and refined structure of the S235A mutant. Acta Crystallogr D Biol Crystallogr. 1995;51:682–94.
Article
Google Scholar
Stec B, Holtz KM, Wojciechowski CL, Kantrowitz ER. Structure of the wild-type TEM-1 beta-lactamase at 1.55 Å and the mutant enzyme Ser70Ala at 2.1 Å suggest the mode of noncovalent catalysis for the mutant enzyme. Acta Crystallogr D Biol Crystallogr. 2005;61:1072–9.
Article
Google Scholar
Wang X, Minasov G, Shoichet BK. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams. Proteins. 2002;47:86–96.
Article
CAS
Google Scholar
Wang X, Minasov G, Blázquez J, Caselli E, Prati F, Shoichet BK. Recognition and resistance in TEM beta-lactamase. Biochemistry. 2003;42:8434–44.
Article
CAS
Google Scholar
Strynadka NC, Adachi H, Jensen SE, Johns K, Sielecki A, Betzel C, Sutoh K, James MN. Molecular structure of the acyl-enzyme intermediate in beta-lactam hydrolysis at 1.7 Å resolution. Nature. 1992;359:700–5.
Article
CAS
Google Scholar
Ke W, Sampson JM, Ori C, Prati F, Drawz SM, Bethel CR, Bonomo RA, van den Akker F. Novel insights into the mode of inhibition of class a SHV-1 beta-lactamases revealed by boronic acid transition state inhibitors. Antimicrob Agents Chemother. 2011;55:174–83.
Article
CAS
Google Scholar
Rodkey EA, Winkler ML, Bethel CR, Pagadala SR, Buynak JD, Bonomo RA, van den Akker F. Penam sulfones and β-lactamase inhibition: SA2-13 and the importance of the C2 side chain length and composition. PLoS One. 2014;9:e85892.
Article
Google Scholar
Barelier S, Eidam O, Fish I, Hollander J, Figaroa F, Nachane R, Irwin JJ, Shoichet BK, Siegal G. Increasing chemical space coverage by combining empirical and computational fragment screens. ACS Chem Biol. 2014;9:1528–35.
Article
CAS
Google Scholar
Beadle BM, Shoichet BK. Structural bases of stability-function tradeoffs in enzymes. J Mol Biol. 2002;321:285–96.
Article
CAS
Google Scholar
Johnson JW, Gretes M, Goodfellow VJ, Marrone L, Heynen ML, Strynadka NC, Dmitrienko GI. Cyclobutanone analogues of beta-lactams revisited: insights into conformational requirements for inhibition of serine- and metallo-beta-lactamases. J Am Chem Soc. 2010;132:2558–60.
Article
CAS
Google Scholar
Smith CA, Antunes NT, Stewart NK, Toth M, Kumarasiri M, Chang M, Mobashery S, Vakulenko SB. Structural basis for carbapenemase activity of the OXA-23 β-lactamase from Acinetobacter baumannii. Chem Biol. 2013;20:1107–15.
Article
CAS
Google Scholar
Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG. A standard numbering scheme for the class a β-lactamases. Biochem J. 1991;276:269–70.
Article
CAS
Google Scholar
Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211–33.
Article
CAS
Google Scholar
Bush K, Jakoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54:969–76.
Article
CAS
Google Scholar
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067.
Article
Google Scholar
Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965;208:239–41.
Article
CAS
Google Scholar
Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23:160–201.
Article
CAS
Google Scholar
Rose PW, Prlić A, Altunkaya A, Bi C, Bradley AR, Christie CH, Costanzo LD, Duarte JM, Dutta S, Feng Z, Green RK, Goodsell DS, Hudson B, Kalro T, Lowe R, Peisach E, Randle C, Rose AS, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook JD, Woo J, Yang H, Young JY, Zardecki C, Berman HM, Burley SK. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2017;45:D271–81.
Article
CAS
Google Scholar
Wiedersten M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10.
Article
Google Scholar
Benkert P, Kunzl M, Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009;37:W510–4.
Article
CAS
Google Scholar
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH. PubChem substance and compound databases. Nucleic Acids Res. 2016;44:D1202–13.
Article
CAS
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.
Article
CAS
Google Scholar
Bianco G, Forli S, Goodsell DS, Olson AJ. Covalent docking using Autodock: two-point attractor and flexible side chain methods. Protein Sci. 2016;25:295–301.
Article
CAS
Google Scholar
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.
Article
CAS
Google Scholar
Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron. 1980;36:3219–28.
Article
CAS
Google Scholar
Huey R, Morris GM, Olson AK, Goodsell DS. A semiempirical free energy force field with charge-based desolvation. J Comput Chem. 2007;28:1145–52.
Article
CAS
Google Scholar