Noble MEM, Endicott JA, Johnson LN. Protein kinase inhibitors: insights into drug design from structure. Science. 2004; 303(5665):1800–5.
Article
CAS
PubMed
Google Scholar
Chen Y, Scully M, Dawson G, Goodwin C, Xia M, Lu X, et al. Perturbation of the heparin/heparin-sulfate interactome of human breast cancer cells modulates pro-tumourigenic effects associated with PI3K/Akt and MAPK/ERK signalling. Thromb Haemost. 2013; 109(6):1148–57.
Article
CAS
PubMed
Google Scholar
Gumbart J, Roux B, Chipot C. Efficient determination of protein-protein standard binding free energies from first principles. J Chem Theory Comput. 2013; 9:3789–98.
Article
CAS
Google Scholar
Omer A, Suryanarayanan V, Selvaraj C, Singh S, Singh P. Re-positioning: Predicting Novel Drug-Target Interactions of the Shelved Molecules with QM/MM Based Approaches. Adv Protein Chem Struct Biol. 2015; 100:89–112.
Article
CAS
PubMed
Google Scholar
Cole J, Murray C, Nissink J, Taylor R, Taylor R. Comparing protein-ligand docking programs is difficult. Proteins. 2005; 60:325–32.
Article
CAS
PubMed
Google Scholar
Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017; 9(2):91–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaghoori MM, Bleijlevens B, Olabarriaga SD. 1001 Ways to run AutoDock Vina for virtual screening. J Comput Aided Mol Des. 2016; 30(3):237–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biesiada J, Porollo A, Velayutham P, Kouril M, Meller J. Survey of public domain software for docking simulations and virtual screening. Hum Genomics. 2011; 5(5):497–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu W, Lakkaraju S, Raman E, MacKerell A. Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modelin. J Comput Aided Mol Des. 2014; 28:491–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu W, Lakkaraju S, Raman E, MacKerell A. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules. J Chem Inf Model. 2015; 55:407–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ung P, Ghanakota P, Graham S, Lexa K, Carlson H. Identifying binding hot spots on protein surfaces by mixed-solvent molecular dynamics: HIV-1 protease as a test case. Biopolymers. 2016; 105:21–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghanakota P, Carlson H. Moving beyond active-site detection: MixMD applied to allosteric systems. J Phys Chem B. 2016; 120:8685–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Limongelli V, Bonomi M, Parrinello M. Moving beyond active-site detection: MixMD applied to allosteric systems. Proc Natl Acad Sci USA. 2013; 110:6358–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Troussicot L, Guillière F, Limongelli V, Walker O, Lancelin J. Funnel-metadynamics and solution NMR to estimate protein-ligand affinities. J Am Chem Soc. 2015; 137:1273–81.
Article
CAS
PubMed
Google Scholar
Söderhjelm P, Tribello G, Parrinello M. Locating binding poses in protein-ligand systems using reconnaissance metadynamics. Proc Natl Acad Sci USA. 2012; 109:5170–5.
Article
PubMed
PubMed Central
Google Scholar
Oleinikovas V, Saladino G, Cossins BP, Gervasio FL. Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. J Am Chem Soc. 2016; 138(43):14257–63.
Article
CAS
PubMed
Google Scholar
Zhu T, Cao S, Su PC, Patel R, Shah D, Chokshi HB, et al.Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J Med Chem. 2013; 56(17):6560–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferenczy GG, Keserü GM. Thermodynamics guided lead discovery and optimization. Drug Discov Today. 2010; 15(21-22):919–32.
Article
CAS
PubMed
Google Scholar
Kesarwani M, Huber E, Kincaid Z, Evelyn CR, Biesiada J, Rance M, et al. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance. Sci Rep. 2015; 5:14538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian X, He Y, Zhou J. Progress in antiandrogen design targeting hormone binding pocket to circumvent mutation based resistance. Front Pharmacol. 2015; 6:57.
PubMed
PubMed Central
Google Scholar
Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, et al.The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc. 2015; 10(5):733–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valsson O, Tiwary P, Parrinello M. Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu Rev Phys Chem. 2016; 67:159–84.
Article
CAS
PubMed
Google Scholar
Maragliano L, Vanden-Eijnden E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett. 2006; 426:168–75.
Article
CAS
Google Scholar
Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G. String method in collective variables: Minimum free energy paths and isocommittor surfaces. J Chem Phys. 2006; 125:024106.
Article
Google Scholar
Maragliano L, Cottone G, Ciccotti G, Vanden-Eijnden E. Mapping the network of pathways of CO diffusion in myoglobin. J Am Chem Soc. 2010; 132:1010–7.
Article
CAS
PubMed
Google Scholar
Abrams C, Vanden-Eijnden E. Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics. Proc Natl Acad Sci USA. 2010; 107:4961–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selwa E, Huynh T, Ciccotti G, Maragliano L, Malliavin TE. Temperature-accelerated molecular dynamics gives insights into globular conformations sampled in the free state of the AC catalytic domain. Proteins Struct Funct Bioinformatics. 2014; 82:2483–96.
Article
CAS
Google Scholar
Naveh MH, Malliavin T, Maragliano L, Cottone G, Ciccotti G. Conformational changes in acetylcholine binding protein investigated by temperature accelerated molecular dynamics. PLoS ONE. 2014; 9:e8855.
Google Scholar
Cortes-Ciriano I, Bouvier G, Nilges M, Maragliano L, Malliavin T. Temperature accelerated molecular dynamics with soft-ratcheting criterion orients enhanced sampling by low-resolution information. J Chem Theory Comput. 2015; 11:3446–54.
Article
CAS
PubMed
Google Scholar
The PyMOL Molecular Graphics System. Version 1.8 Schrödinger, LLC.
Peterson C, Laniel M. Histones and histone modifications. Curr Biol CB. 2004; 14:R546–5.
Article
CAS
PubMed
Google Scholar
Luger K, Mader A, Robin K, Sargent D, Richmond T. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 1997; 389:251–60.
Article
CAS
PubMed
Google Scholar
Dhalluin C, Carlson J, Zeng L, He C, Aggarwal A, Zhou M. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999; 399:491–6.
Article
CAS
PubMed
Google Scholar
Tweedie-Cullen R, Reck J, Mansuy I. Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res. 2009; 8:4966–82.
Article
CAS
PubMed
Google Scholar
Bannister A, Kouzarides T. Regulation of chromatin by histone modifications. Cell. 2007; 128:693–705.
Article
Google Scholar
Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128:693–705.
Article
CAS
PubMed
Google Scholar
Patel D, Wang Z. Readout of epigenetic modifications. Annu Rev Biochem. 2013; 82:81–118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Zeng L, Zhao C, Ju Y, Konuma T, Zhou M. Structural Insights into Histone Crotonyl-Lysine Recognition by the AF9 YEATS Domain. Structure. 2016; 24:1606–12.
Article
PubMed
PubMed Central
Google Scholar
Zhao D, Guan H, Zhao S, Mi W, Wen H, Li Y, et al. YEATS2 is a selective histone crotonylation reader. Cell Res. 2016; 26:629–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Wen H, Xi Y, Tanaka K, Wang H, Peng D, et al. AF9 YEATS domain links histone acetylation to DOT1l-mediated H3k79 methylation. Cell. 2014; 159:558–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulze J, Wang A, Kobor M. Reading chromatin: insights from yeast into YEATS domain structure and function. Epigenetics. 2010; 5:573–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulze J, Wang A, Kobor M. YEATS domain proteins: a diverse family with many links to chromatin modification and transcription. Biochem Cell Biol. 2009; 87:65–75.
Article
CAS
PubMed
Google Scholar
Audia J, Campbell R. Histone modifications and cancer. Cold Spring Harbor Perspect Biol. 2016; 8:a019521.
Article
Google Scholar
Erb M, Scott T, Li B, Xie H, Paulk J, Seo H, et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature. 2017; 543:270–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan L, Wong H, Li Y, Lyu J, Xi Y, Hoshii T, et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature. 2017; 543:265–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci. 2013; 3:198–210.
Article
CAS
Google Scholar
Duan Y, Wu C, Chowdhury S, Lee M, Xiong G, Zhang W, et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 2003; 24:1999–2012.
Article
CAS
PubMed
Google Scholar
Khoury G, Thompson J, Smadbeck J, Kieslich C, Floudas C. Forcefield ptm: Ab initio charge and AMBER forcefield parameters for frequently Oc- curring post-translational modifications. J Chem Theory Comput. 2013; 9:5653–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26:1781–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perilla J, Beckstein O, Denning E, Woolf T. Computing ensembles of transitions from stable states: Dynamic importance sampling. J Comput Chem. 2011; 2:196–209.
Article
Google Scholar
Perilla J. Computing ensembles of transitions with molecular dynamics simulations. Methods Mol Biol. 2015; 1215:237–52, Woolf, T.
Article
CAS
PubMed
Google Scholar
Michaud-Agrawal N, Denning E, Woolf T, Beckstein O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem. 2011; 32:2319–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schrödinger LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015.
Notredame C, Holm L, Higgins DG. COFFEE: an objective function for multiple sequence alignments. Bioinformatics. 1998; 14(5):407–22.
Article
CAS
PubMed
Google Scholar
Spaar A, Dammer C, Gabdoulline R, Wade R, Helms V. Diffusional encounter of barnase and barstar. Biophys J. 2006; 90:1913–24.
Article
CAS
PubMed
Google Scholar
Ma B, Nussinov R. Release factors eRF1 and RF2: a universal mechanism controls the large conformational changes. J Biol Chem. 2004; 279:53875–5.
Article
CAS
PubMed
Google Scholar
Bakan A, Bahar I. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc Natl Acad Sci U S A. 2009; 106:14349–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porter KA, Xia B, Beglov D, Bohnuud T, Alam N, Schueler-Furman O, et al. ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT. Bioinformatics. 2017; 33(20):3299–301.
Article
PubMed
PubMed Central
Google Scholar
Moroy G, Sperandio O, Rielland S, Khemka S, Druart K, Goyal D, et al. Sampling of conformational ensemble for virtual screening using molecular dynamics simulations and normal mode analysis. Future Med Chem. 2015; 7(17):2317–31.
Article
CAS
PubMed
Google Scholar
Bakan A, Bahar I. Computational generation inhibitor-bound conformers of p38 MAP kinase and comparison with experiments. Pac Symp Biocomput. 2011:181–92. https://www.ncbi.nlm.nih.gov/pubmed/21121046.
Leis S, Zacharias M. Efficient inclusion of receptor flexibility in grid-based protein-ligand docking. J Comput Chem. 2011; 32(16):3433–9.
Article
CAS
PubMed
Google Scholar
Sperandio O, Mouawad L, Pinto E, Villoutreix BO, Perahia D, Miteva MA. How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis. Eur Biophys J. 2010; 39(9):1365–72.
Article
CAS
PubMed
Google Scholar
Marcu O, Dodson EJ, Alam N, Sperber M, Kozakov D, Lensink MF, et al. FlexPepDock lessons from CAPRI peptide-protein rounds and suggested new criteria for assessment of model quality and utility. Proteins. 2017; 85:445–62.
Article
CAS
PubMed
Google Scholar
Yu J, Andreani J, Ochsenbein F, Guerois R. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35. Proteins. 2017; 85(3):378–90.
Article
CAS
PubMed
Google Scholar
van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. The HADDOCK2.2 webserver: User-friendly integrative modeling of biomolecular complexes. J Mol Biol. 2016; 428:720–5.
Article
CAS
PubMed
Google Scholar