Roussigne M, Kossida S, Lavigne A-C, Clouaire T, Ecochard V, Glories A, Amalric F, Girard J-P. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem Sci. 2003;28:66–9.
Article
CAS
Google Scholar
Macfarlan T, Kutney S, Altman B, Montross R, Yu J, Chakravarti D. Human THAP7 Is a Chromatin-associated, Histone Tail-binding Protein That Represses Transcription via Recruitment of HDAC3 and Nuclear Hormone Receptor Corepressor. J Biol Chem. 2004;280:7346–58.
Article
Google Scholar
Dejosez M, Krumenacker JS, Zitur LJ, Passeri M, Chu L-F, Songyang Z, Thomson JA, Zwaka TP. Ronin is essential for embryogenesis and the pluripotency of mouse embryonic stem cells. Cell. 2008;133:1162–74.
Article
CAS
Google Scholar
Lin Y, Khokhlatchev A, Figeys D, Avruch J. Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J Biol Chem. 2002;277:47991–8001.
Article
CAS
Google Scholar
Cayrol C, Lacroix C, Mathe C, Ecochard V, Ceribelli M, Loreau E, Lazar V, Dessen P, Mantovani R, Aguilar L, Girard J-P. The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell-cycle target genes. Blood. 2007;109:584–94.
Article
CAS
Google Scholar
Balakrishnan MP, Cilenti L, Mashak Z, Popat P, Alnemri ES, Zervos AS. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death. Am J Physiol Heart Circ Physiol. 2009;297:H643–53.
Article
CAS
Google Scholar
Majumdar S, Singh A, Rio DC. The human THAP9 gene encodes an active P-element DNA transposase. Science. 2013;339:446–8.
Article
CAS
Google Scholar
Richter A, Hollstein R, Hebert E, Vulinovic F, Eckhold J, Osmanovic A, Depping R, Kaiser FJ, Lohmann K. In-depth Characterization of the Homodimerization Domain of the Transcription Factor THAP1 and Dystonia-Causing Mutations Therein. J Mol Neurosci. 2017;62:11–6.
Article
CAS
Google Scholar
Gervais V, Campagne S, Durand J, Muller I, Milon A. NMR studies of a new family of DNA binding proteins: the THAP proteins. J Biomol NMR. 2013;56:3–15.
Article
CAS
Google Scholar
Leite KRM, Morais DR, Reis ST, Viana N, Moura C, Florez MG, Silva IA, Dip N, Srougi M. MicroRNA 100: a context dependent miRNA in prostate cancer. Clinics. 2013;68:797–802.
Article
Google Scholar
Burkhard P, Stetefeld J, Strelkov SV. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 2001;11:82–8.
Article
CAS
Google Scholar
Lupas AN, Bassler J. Coiled Coils - A Model System for the 21st Century. Trends Biochem Sci. 2017;42:130–40.
Article
CAS
Google Scholar
Schiffer M, Edmundson AB. Use of Helical Wheels to Represent the Structures of Proteins and to Identify Segments with Helical Potential. Biophys J. 1967;7:121–35.
Article
CAS
Google Scholar
Fischer NW, Prodeus A, Malkin D, Gariépy J. p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle. 2016;15:3210–9.
Article
CAS
Google Scholar
O’Shea E, Klemm J, Kim P, Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991;254:539–44.
Article
Google Scholar
Clarke M, Spudich JA. Nonmuscle Contractile Proteins: The Role of Actin and Myosin in Cell Motility and Shape Determination. Annu Rev Biochem. 1977;46:797–822.
Article
CAS
Google Scholar
Michel K, O’Brochta DA, Atkinson PW. The C-terminus of the Hermes transposase contains a protein multimerization domain. Insect Biochem Mol Biol. 2003;33:959–70.
Article
CAS
Google Scholar
Gale M Jr, Blakely CM, Hopkins DA, Melville MW, Wambach M, Romano PR, Katze MG. Regulation of interferon-induced protein kinase PKR: modulation of P58IPK inhibitory function by a novel protein, P52rIPK. Mol Cell Biol. 1998;18:859–71.
Article
CAS
Google Scholar
Cukier CD, Maveyraud L, Saurel O, Guillet V, Milon A, Gervais V. The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization. J Struct Biol. 2016;194:337–46.
Article
CAS
Google Scholar
An DR, Im HN, Jang JY, Kim HS, Kim J, Yoon HJ, Hesek D, Lee M, Mobashery S, Kim SJ, Suh SW. Structural Basis of the Heterodimer Formation between Cell Shape-Determining Proteins Csd1 and Csd2 from Helicobacter pylori. PLoS One. 2016;11(10):e0164243.
Article
Google Scholar
Parry DAD, Fraser RDB, Squire JM. Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. J Struct Biol. 2008;163:258–69.
Article
CAS
Google Scholar
Mazars R, Gonzalez-de-Peredo A, Cayrol C, Lavigne A-C, Vogel JL, Ortega N, Lacroix C, Gautier V, Huet G, Ray A, Monsarrat B, Kristie TM, Girard J-P. The THAP-zinc finger protein THAP1 associates with coactivator HCF-1 and O-GlcNAc transferase: a link between DYT6 and DYT3 dystonias. J Biol Chem. 2010;285:13364–71.
Article
CAS
Google Scholar
Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 2015;43:W389–94.
Article
CAS
Google Scholar
Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 1999;292:195–202.
Article
CAS
Google Scholar
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.
Article
CAS
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, Gapped BLAST. PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
CAS
Google Scholar
Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins. 2000;40:502–11.
Article
CAS
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Article
Google Scholar
Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007;23:1875–82.
Article
CAS
Google Scholar
Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43:W174–81.
Article
CAS
Google Scholar
Peng J, Xu J. RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins. 2011;79(Suppl 10):161–71.
Article
CAS
Google Scholar
Wu S, Zhang Y. LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Res. 2007;35(10):3375–82.
Article
CAS
Google Scholar
DrawCoil 1.0 https://grigoryanlab.org/drawcoil/. Accessed 10 June 2017.
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.
Article
CAS
Google Scholar
Wolf E, Kim PS, Berger B. MultiCoil: A Program for Predicting Two- and Three-Stranded Coiled Coils. Protein Sci. 1997;6:1179–89.
Article
CAS
Google Scholar
Vincent TL, Green PJ, Woolfson DN. LOGICOIL: Multi-state classification of coiled-coil oligomeric state. Bioinformatics. 2013;29(1):69–76.
Article
CAS
Google Scholar
Sillitoe I, Lewis TE, Cuff A, Das S, Ashford P, Dawson NL, Furnham N, Laskowski RA, Lee D, Lees JG, Lehtinen S, Studer RA, Thornton J, Orengo CA. CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 2015;43:D376–81.
Article
CAS
Google Scholar
Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995;247:536–40.
CAS
PubMed
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR. The Pfam protein families database. Nucleic Acids Res. 2004;32:D138–41.
Article
CAS
Google Scholar
Campagne S, Saurel O, Gervais V, Milon A. Structural determinants of specific DNA-recognition by the THAP zinc finger. Nucleic Acids Res. 2010;38:3466–76.
Article
CAS
Google Scholar
Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M. Classification of Human B-ZIP Proteins Based on Dimerization Properties. Mol Cell Biol. 2002;22:6321–35.
Article
CAS
Google Scholar
Ferguson SM, De Camilli P. Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol. 2012;13:75–88.
Article
CAS
Google Scholar
Amoutzias GD, Robertson DL, Van de Peer Y, Oliver SG. Choose your partners: dimerization in eukaryotic transcription factors. Trends Biochem Sci. 2008;33:220–9.
Article
CAS
Google Scholar
Balakrishnan MP, Cilenti L, Ambivero C, Goto Y, Takata M, Turkson J, Li XS, Zervos AS. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death. Biochem Biophys Res Commun. 2011;404:195–200.
Article
CAS
Google Scholar
Parker JB, Palchaudhuri S, Yin H, Wei J, Chakravarti D. A Transcriptional Regulatory Role of the THAP11-HCF-1 Complex in Colon Cancer Cell Function. Mol Cell Biol. 2012;32:1654–70.
Article
CAS
Google Scholar
Kosugi S, Hasebe M, Matsumura N, Takashima H, Miyamoto-Sato E, Tomita M, Yanagawa H. Six classes of nuclear localization signals specific to different binding grooves of importin alpha. J Biol Chem. 2009;284:478–85.
Article
CAS
Google Scholar
Clamp M, et al. The Jalview Java alignment editor. Bioinformatics. 2004;20:426–7.
Article
CAS
Google Scholar