Verbruggen B, Bickley LK, van Aerle R, Bateman KS, Stentiford GD, Santos EM, et al. Molecular mechanisms of white spot syndrome virus infection and perspectives on treatments. Viruses. 2016;8:1–29.
Article
Google Scholar
van Hulten MCW, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, et al. The white spot syndrome virus DNA genome sequence. Virology. 2001;286:7–22. https://doi.org/10.1006/viro.2001.1002.
Article
CAS
PubMed
Google Scholar
Hoa TT, Hodgson RAJ, Oanh DT, Phoung NT, Preston NJ, Walker PJ. Genotypic variations in tandem repeat DNA segments between ribonucletide reductase subunit genes of White Spot Syndrome Virus (WSSV) isolates from Vietnam. Dis Asian Aquac V. 2005; May 2014:339–51.
Zwart MP, Dieu BTM, Hemerik L, Vlak JM. Evolutionary trajectory of white spot syndrome virus (WSSV) genome shrinkage during spread in Asia. PLoS One. 2010;5.
Article
PubMed
PubMed Central
Google Scholar
Gudkovs N, Murwantoko I, Walker PJ. Stability of the WSSV ORF94 VNTR genotype marker during passage in marine shrimp, freshwater crayfish and freshwater prawns. Dis Aquat Org. 2014;111:249–57.
Article
CAS
Google Scholar
Marks H, Goldbach RW, Vlak JM, Van Hulten MCW. Genetic variation among isolates of white spot syndrome virus. Arch Virol. 2004;149:673–97.
Article
CAS
PubMed
Google Scholar
Muller IC, Andrade TPD, Tang-Nelson KFJ, Marques MRF, Lightner DV. Genotyping of white spot syndrome virus (WSSV) geographical isolates from Brazil and comparison to other isolates from the Americas. Dis Aquat Org. 2010;88:91–8.
Article
CAS
Google Scholar
Gao M, Li F, Xu L, Zhu X. White spot syndrome virus strains of different virulence induce distinct immune response in Cherax quadricarinatus. Fish Shellfish Immunol. 2014;39:17–23. https://doi.org/10.1016/j.fsi.2014.04.011.
Article
CAS
PubMed
Google Scholar
Li F, Gao M, Xu L, Yang F. Comparative genomic analysis of three white spot syndrome virus isolates of different virulence. Virus Genes. 2017;53:249–58.
Article
CAS
PubMed
Google Scholar
Abdollahi S, Rasooli I, Mousavi Gargari SL. An in silico structural and physicochemical characterization of TonB-dependent copper receptor in A baumannii. Microb Pathog 2018;118 2017:18–31. https://doi.org/10.1016/j.micpath.2018.03.009.
Article
CAS
PubMed
Google Scholar
Nagarajan V, Elasri MO. Structure and function predictions of the Msa protein in Staphylococcus aureus. BMC Bioinformatics. 2007;8(SUPPL. 7):1–9.
Google Scholar
Ferron F, Bussetta C, Dutartre H, Canard B. The modeled structure of the RNA dependent RNA polymerase of GBV-C virus suggests a role for motif E in Flaviviridae RNA polymerases. BMC Bioinformatics. 2005;6:1–16.
Article
Google Scholar
Ganguly B, Rastogi SK. Structural and functional modeling of viral protein 5 of infectious bursal disease virus. Virus Res. 2018;247 November 2017:55–60. https://doi.org/10.1016/j.virusres.2018.01.017.
Article
CAS
PubMed
Google Scholar
Krupovic M, Dolja VV, Koonin EV. Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes. Biol Direct. 2015;10:12. https://doi.org/10.1186/s13062-015-0047-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ganguly B, Prasad S. Homology modeling and functional annotation of bubaline pregnancy associated glycoprotein 2. J Anim Sci Biotechnol. 2012;3:1–9.
Article
Google Scholar
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2017; May:1–7. https://doi.org/10.1093/bib/bbx108.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
Crooks G, Hon G, Chandonia J, Brenner S. NCBI GenBank FTP Site\nWebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90. https://doi.org/10.1101/gr.849004.1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods. 2012;9:173–5.
Article
CAS
Google Scholar
Söding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33(SUPPL. 2):244–8.
Article
Google Scholar
Mirdita M, Von Den Driesch L, Galiez C, Martin MJ, Soding J, Steinegger M. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 2017;45:D170–6.
Article
CAS
PubMed
Google Scholar
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M, et al. Comparative protein structure modeling using Modeller. 2006.
Book
Google Scholar
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:252–8.
Article
Google Scholar
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:1–8.
Article
Google Scholar
Kelly LA, Mezulis S, Yates C, Wass M, Sternberg M. The Phyre2 web portal for protein modelling, prediction, and analysis. Nat Protoc. 2015;10:845–58. https://doi.org/10.1038/nprot.2015-053.
Article
Google Scholar
Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2013;41(Web Server issue):349–57.
Article
Google Scholar
Lobley A, Sadowski MI, Jones DT. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics. 2009;25:1761–7.
Article
CAS
PubMed
Google Scholar
Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr. 2010;66:12–21.
Article
CAS
Google Scholar
Lovell SC, Davis IW, Adrendall WB, de Bakker PIW, Word JM, Prisant MG, et al. Structure validation by C alpha geometry: phi,psi and C beta deviation. Proteins-Structure Funct Genet. 2003;50 August 2002:437–50. https://doi.org/10.1002/prot.10286.
Article
CAS
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.
Article
CAS
PubMed
Google Scholar
Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, et al. FoldIndex©: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics. 2005;21:3435–8.
Article
CAS
PubMed
Google Scholar
Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.
Article
CAS
PubMed
Google Scholar
Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6. https://doi.org/10.1038/nmeth.1701.
Article
CAS
PubMed
Google Scholar
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46:D493–6.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–6.
Article
CAS
PubMed
Google Scholar
de Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, et al. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34(WEB. SERV. ISS):362–5.
Article
Google Scholar
Dinkel H, Michael S, Weatheritt RJ, Davey NE, Van Roey K, Altenberg B, et al. ELM - the database of eukaryotic linear motifs. Nucleic Acids Res. 2012;40:242–51.
Article
Google Scholar
Kuper J, Wolski SC, Michels G, Kisker C. Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J. 2012;31:494–502.
Article
CAS
PubMed
Google Scholar
Liu H, Rudolf J, Johnson KA, Mcmahon SA, Oke M, Mcrobbie A, et al. Europe PMC funders group structure of the DNA repair helicase XPD. Cell. 2012;133:801–12.
Article
Google Scholar
Fisher RD, Wang B, Alam SL, Higginson DS, Robinson H, Sundquist WI, et al. Structure and ubiquitin binding of the ubiquitin-interacting motif. J Biol Chem. 2003;278:28976–84.
Article
CAS
PubMed
Google Scholar
Hofmann K, Falquet L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci. 2001;26:347–50.
Article
CAS
PubMed
Google Scholar
Lin F, Huang H, Xu L, Li F, Yang F. Identification of three immediate-early genes of white spot syndrome virus. Arch Virol. 2011;156:1611–4. https://doi.org/10.1007/s00705-011-1004-1.
Article
CAS
PubMed
Google Scholar
Yang F, He J, Lin X, Li Q, Pan D, Xu XUN. Complete genome sequence of the shrimp white spot bacilliform virus complete genome sequence of the shrimp white spot bacilliform virus. J Virol. 2001;75:11811–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aspenström P. Formin-binding proteins: modulators of formin-dependent actin polymerization. Biochim Biophys Acta Mol Cell Res. 2010;1803:174–82. https://doi.org/10.1016/j.bbamcr.2009.06.002.
Article
CAS
Google Scholar
Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature. 2005;433:488–94.
Article
CAS
PubMed
Google Scholar
Otomo T, Tomchick DR, Otomo C, Machius M, Rosen MK. Crystal structure of the formin mDIA1 in autoinhibited conformation. PLoS One. 2010;5:1–13.
Article
Google Scholar
Xu Y, Moseley JB, Sagot I, Poy F, Pellman D, Goode BL, et al. Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell. 2004;116:711–23.
Article
CAS
PubMed
Google Scholar
Schönichen A, Geyer M. Fifteen formins for an actin filament: a molecular view on the regulation of human formins. Biochim Biophys Acta Mol Cell Res. 2010;1803:152–63. https://doi.org/10.1016/j.bbamcr.2010.01.014.
Article
CAS
Google Scholar
Thompson ME, Heimsath EG, Gauvin TJ, Higgs HN, Jon KF. FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation. Nat Struct Mol Biol. 2013;20:111–8.
Article
CAS
PubMed
Google Scholar
Spear M, Wu Y. Viral exploitation of actin: force-generation and scaffolding functions in viral infection. Virol Sin. 2014;29:139–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, et al. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog. 2012;8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez DE, Agaisse H. The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin-based motility. J Cell Biol. 2013;202:1075–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han F, Xu J, Zhang X. Characterization of an early gene (wsv477) from shrimp white spot syndrome virus (WSSV). Virus Genes. 2007;34:193–8.
Article
CAS
PubMed
Google Scholar
Huang T, Xu D, Zhang X. Characterization of host microRNAs that respond to DNA virus infection in a crustacean. BMC Genomics. 2012;13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang T, Zhang X. Functional analysis of a crustacean MicroRNA in host-virus interactions. J Virol. 2012;86:12997–3004. https://doi.org/10.1128/JVI.01702-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conte MR. Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J. 2000;19:3132–41. https://doi.org/10.1093/emboj/19.12.3132.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondo Y, Oubridge C, Van Roon AM, Nagai K. Crystal structure of human U1 snRNP , a small nuclear ribonucleoprotein particle , reveals the mechanism of 5 ′ splice site recognition. Elife. 2015;4:1–19. https://doi.org/10.7554/eLife.04986.
Article
Google Scholar
Maris C, Dominguez C, Allain FHT. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 2005;272:2118–31.
Article
CAS
Google Scholar
Martin-Tumasz S, Richie AC, Clos LJ, Brow DA, Butcher SE. A novel occluded RNA recognition motif in Prp24 unwinds the U6 RNA internal stem loop. Nucleic Acids Res. 2011;39:7837–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber G, Trowitzsch S, Kastner B, Lührmann R, Wahl MC. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J. 2010;29:4172–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim CS, Seol SK, Song O-K, Park JH, Jang SK. An RNA-binding protein, hnRNP A1, and a scaffold protein, Septin 6, facilitate hepatitis C virus replication. J Virol. 2007;81:3852–65. https://doi.org/10.1128/JVI.01311-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cléry A, Blatter M, Allain FHT. RNA recognition motifs: boring? Not quite Curr Opin Struct Biol. 2008;18:290–8.
Article
PubMed
Google Scholar
Liu Y, Wu J, Song J, Sivaraman J, Hew CL. Identification of a novel nonstructural protein, VP9, from white spot syndrome virus: its structure reveals a ferredoxin fold with specific metal binding sites. J Virol. 2006;80:10419–27. https://doi.org/10.1128/JVI.00698-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Skehel JJ, Wiley DC. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA2 subunit to form an N cap that terminates the triple-stranded coiled coil. Proc Natl Acad Sci. 1999;96:8967–72. https://doi.org/10.1073/pnas.96.16.8967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, DeFeo CJ, Alvarado-Facundo E, Vassell R, Weiss CD. Intermonomer interactions in hemagglutinin subunits HA1 and HA2 affecting hemagglutinin stability and influenza virus infectivity. J Virol. 2015;89:10602–11. https://doi.org/10.1128/JVI.00939-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos-Paredes J, Grijalva-Chon JM, la Rosa-Vélez JD, Enríquez-Paredes LM. New genetic recombination in hypervariable regions of the white spot syndrome virus isolated from Litopenaeus vannamei (Boone) in Northwest Mexico. Aquac Res. 2012;43:339–48. https://doi.org/10.1111/j.1365-2109.2011.02836.x.
Article
CAS
Google Scholar
Shekar M, Pradeep B, Karunasagar I. White spot syndrome virus: genotypes, epidemiology and evolutionary studies. Indian J Virol. 2012;23:175–83.
Article
PubMed
PubMed Central
Google Scholar
Huang C. Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466. Mol Cell Proteomics. 2002;1:223–31. https://doi.org/10.1074/mcp.M100035-MCP200.
Article
CAS
PubMed
Google Scholar
Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin ?? J Biol Chem. 2007;282:5101–5.
Article
CAS
PubMed
Google Scholar
Cokol M, Nair R, Rost B. Finding nuclear localization signals. EMBO Rep. 2000;1:411–5. https://doi.org/10.1093/embo-reports/kvd092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marfori M, Mynott A, Ellis JJ, Mehdi AM, Saunders NFW, Curmi PM, et al. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim Biophys Acta Mol Cell Res. 1813;2011:1562–77. https://doi.org/10.1016/j.bbamcr.2010.10.013.
Article
CAS
Google Scholar
Riddick G, Macara IG. The adapter importin-α provides flexible control of nuclear import at the expense of efficiency. Mol Syst Biol. 2007;3:1–7. https://doi.org/10.1038/msb4100160.
Article
Google Scholar
Sage V Le, Mouland AJ. Viral Subversion of the Nuclear Pore Complex. Viruses. 2013;5(8):2019–42. Published online 2013 Aug 15. doi: https://doi.org/10.3390/v5082019.
Article
PubMed
PubMed Central
Google Scholar
Dieu BTM. Molecular epidemiology of white spot syndrome virus within Vietnam. J Gen Virol. 2004;85:3607–18. https://doi.org/10.1099/vir.0.80344-0.
Article
CAS
PubMed
Google Scholar
Parra RG, Espada R, Verstraete N, Ferreiro DU. Structural and energetic characterization of the Ankyrin repeat protein family. PLoS Comput Biol. 2015;11:1–20.
Article
Google Scholar
Li J, Mahajan A, Tsai MD. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry. 2006;45:15168–78.
Article
CAS
PubMed
Google Scholar
Sedgwick SG, Smerdon SJ. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci. 1999;24:311–6.
Article
CAS
PubMed
Google Scholar
Herbert MH, Squire CJ, Mercer AA. Poxviral ankyrin proteins. Viruses. 2015;7:709–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noel EA, Kang M, Adamec J, Van Etten JL, Oyler GA. Chlorovirus Skp1-binding Ankyrin repeat protein interplay and mimicry of cellular ubiquitin ligase machinery. J Virol. 2014;88:13798–810. https://doi.org/10.1128/JVI.02109-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Chua HK, Gusti AARA, Fenner B, Manopo I, Wang H, et al. RING-H2 Protein WSSV249 from White Spot Syndrome Virus Sequesters a Shrimp Ubiquitin-Conjugating Enzyme , PvUbc , for Viral Pathogenesis RING-H2 Protein WSSV249 from White Spot Syndrome Virus Sequesters a Shrimp Ubiquitin-Conjugating Enzyme , PvUbc , for . 2005;79:8764–8772.
Zheng N, Shabek N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu Rev Biochem. 2017;86:129–157. doi: https://doi.org/10.1146/annurev-biochem-060815-014922 . Epub 2017 Mar 27.