Vehar GA, Keyt B, Eaton D, Rodriguez H, O'Brien DP, Rotblat F, et al.: Structure of human factor VIII. Nature 1984, 312: 337–342. 10.1038/312337a0
Article
CAS
PubMed
Google Scholar
Saenko EL, Ananyeva NM, Kouiavskaia DV, Khrenov AV, Anderson JA, Shima M, et al.: Haemophilia A: effects of inhibitory antibodies on factor VIII functional interactions and approaches to prevent their action. Haemophilia 2002, 8: 1–11. 10.1046/j.1365-2516.2002.00579.x
Article
CAS
PubMed
Google Scholar
Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S: Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 1990, 76: 1–16.
CAS
PubMed
Google Scholar
van Dieijen G, Tans G, Rosing J, Hemker HC: The role of phospholipid and factor VIIIa in the activation of bovine factor X. J Biol Chem 1981, 256: 3433–3442.
CAS
PubMed
Google Scholar
Fay PJ, Haidaris PJ, Smudzin TM: Human factor VIIIa subunit structure. Reconstruction of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunit. J Biol Chem 1991, 266: 8957–8962.
CAS
PubMed
Google Scholar
Wakabayashi H, Fay PJ: Identification of residues contributing to A2 domain-dependent structural stability in factor VIII and factor VIIIa. J Biol Chem 2008, 283: 11645–11651. 10.1074/jbc.M710252200
Article
PubMed Central
CAS
PubMed
Google Scholar
Fay PJ, Koshibu K, Mastri M: The A1 and A2 subunits of factor VIIIa synergistically stimulate factor IXa catalytic activity. J Biol Chem 1999, 274: 15401–15406. 10.1074/jbc.274.22.15401
Article
CAS
PubMed
Google Scholar
Fay PJ, Koshibu K: The A2 subunit of factor VIIIa modulates the active site of factor IXa. J Biol Chem 1998, 273: 19049–19054. 10.1074/jbc.273.30.19049
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Zhou Q, Varfaj F, Fay PJ: A3 domain residue Glu1829 contributes to A2 subunit retention in factor VIIIa. J Thromb Haemost 2007, 5: 996–1001. 10.1111/j.1538-7836.2007.02458.x
Article
CAS
PubMed
Google Scholar
Newell JL, Fay PJ: Acidic residues C-terminal to the A2 domain facilitate thrombin-catalyzed activation of factor VIII. Biochemistry 2008, 47: 8786–8795. 10.1021/bi8007824
Article
PubMed Central
CAS
PubMed
Google Scholar
Nogami K, Wakabayashi H, Schmidt K, Fay PJ: Altered interactions between the A1 and A2 subunits of factor VIIIa following cleavage of A1 subunit by factor Xa. J Biol Chem 2003, 278: 1634–1641. 10.1074/jbc.M209811200
Article
CAS
PubMed
Google Scholar
Jenkins PV, Dill JL, Zhou Q, Fay PJ: Clustered basic residues within segment 484–510 of the factor VIIIa A2 subunit contribute to the catalytic efficiency for factor Xa generation. J Thromb Haemost 2004, 2: 452–458. 10.1111/j.1538-7933.2004.00625.x
Article
CAS
PubMed
Google Scholar
Shen BW, Spiegel PC, Chang CH, Huh JW, Lee JS, Kim J, et al.: The tertiary structure and domain organization of coagulation factor VIII. Blood 2008, 111: 1240–1247. 10.1182/blood-2007-08-109918
Article
PubMed Central
CAS
PubMed
Google Scholar
Ngo JC, Huang M, Roth DA, Furie BC, Furie B: Crystal structure of human factor VIII: implications for the formation of the factor IXa-factor VIIIa complex. Structure 2008, 16: 597–606. 10.1016/j.str.2008.03.001
Article
CAS
PubMed
Google Scholar
Wiederstein M, Sippl MJ: ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007, 35: W407-W410. 10.1093/nar/gkm290
Article
PubMed Central
PubMed
Google Scholar
Wakabayashi H, Koszelak ME, Mastri M, Fay PJ: Metal ion-independent association of factor VIII subunits and the roles of calcium and copper ions for cofactor activity and inter-subunit affinity. Biochemistry 2001, 40: 10293–10300. 10.1021/bi010353q
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Schmidt KM, Fay PJ: Ca(2+) binding to both the heavy and light chains of factor VIII is required for cofactor activity. Biochemistry 2002, 41: 8485–8492. 10.1021/bi025589o
Article
CAS
PubMed
Google Scholar
Sudhakar K, Fay PJ: Effects of copper on the structure and function of factor VIII subunits: evidence for an auxiliary role for copper ions in cofactor activity. Biochemistry 1998, 37: 6874–6882. 10.1021/bi980084c
Article
CAS
PubMed
Google Scholar
Sudhakar K, Fay PJ: Effects of copper on the structure and function of factor VIII subunits: evidence for an auxiliary role for copper ions in cofactor activity. Biochemistry 1998, 37: 6874–6882. 10.1021/bi980084c
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Schmidt KM, Fay PJ: Ca(2+) binding to both the heavy and light chains of factor VIII is required for cofactor activity. Biochemistry 2002, 41: 8485–8492. 10.1021/bi025589o
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Schmidt KM, Fay PJ: Ca(2+) binding to both the heavy and light chains of factor VIII is required for cofactor activity. Biochemistry 2002, 41: 8485–8492. 10.1021/bi025589o
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Freas J, Zhou Q, Fay PJ: Residues 110–126 in the A1 domain of factor VIII contain a Ca2+ binding site required for cofactor activity. J Biol Chem 2004, 279: 12677–12684. 10.1074/jbc.M311042200
Article
CAS
PubMed
Google Scholar
Venkateswarlu D, Perera L, Darden T, Pedersen LG: Structure and dynamics of zymogen human blood coagulation factor X. Biophys J 2002, 82: 1190–1206. 10.1016/S0006-3495(02)75476-3
Article
PubMed Central
CAS
PubMed
Google Scholar
Venkateswarlu D, Duke RE, Perera L, Darden TA, Pedersen LG: An all-atom solution-equilibrated model for human extrinsic blood coagulation complex (sTF-VIIa-Xa): a protein-protein docking and molecular dynamics refinement study. J Thromb Haemost 2003, 1: 2577–2588. 10.1111/j.1538-7836.2003.00421.x
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Su YC, Ahmad SS, Walsh PN, Fay PJ: A Glu113Ala mutation within a factor VIII Ca2+-binding site enhances cofactor interactions in factor Xase. Biochemistry 2005, 44: 10298–10304. 10.1021/bi050638t
Article
PubMed Central
CAS
PubMed
Google Scholar
Wakabayashi H, Freas J, Zhou Q, Fay PJ: Residues 110–126 in the A1 domain of factor VIII contain a Ca2+ binding site required for cofactor activity. J Biol Chem 2004, 279: 12677–12684. 10.1074/jbc.M311042200
Article
CAS
PubMed
Google Scholar
Bento I, Peixoto C, Zaitsev VN, Lindley PF: Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites. Acta Crystallogr D Biol Crystallogr 2007, 63: 240–248. 10.1107/S090744490604947X
Article
PubMed Central
CAS
PubMed
Google Scholar
Adams TE, Hockin MF, Mann KG, Everse SJ: The crystal structure of activated protein C-inactivated bovine factor Va: Implications for cofactor function. Proc Natl Acad Sci USA 2004, 101: 8918–8923. 10.1073/pnas.0403072101
Article
PubMed Central
CAS
PubMed
Google Scholar
Bihoreau N, Pin S, de Kersabiec AM, Vidot F, Fontaine-Aupart MP: Metal identification in human anti-hemophilia A factor (factor VIII). C R Acad Sci III 1993, 316: 536–539.
CAS
PubMed
Google Scholar
Wakabayashi H, Koszelak ME, Mastri M, Fay PJ: Metal ion-independent association of factor VIII subunits and the roles of calcium and copper ions for cofactor activity and inter-subunit affinity. Biochemistry 2001, 40: 10293–10300. 10.1021/bi010353q
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Koszelak ME, Mastri M, Fay PJ: Metal ion-independent association of factor VIII subunits and the roles of calcium and copper ions for cofactor activity and inter-subunit affinity. Biochemistry 2001, 40: 10293–10300. 10.1021/bi010353q
Article
CAS
PubMed
Google Scholar
Balasubramanian S, Carr RT, Bender CJ, Peisach J, Benkovic SJ: Histidines 138 and 143 are copper binding ligands in Chromobacterium violaceum phenylalanine hydroxylase. Adv Exp Med Biol 1993, 338: 67–70.
Article
CAS
PubMed
Google Scholar
Nakamura M, Shishido N, Nunomura A, Smith MA, Perry G, Hayashi Y, et al.: Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron. Biochemistry 2007, 46: 12737–12743. 10.1021/bi701079z
Article
CAS
PubMed
Google Scholar
Gralka E, Valensin D, Porciatti E, Gajda C, Gaggelli E, Valensin G, et al.: CuII binding sites located at His-96 and His-111 of the human prion protein: thermodynamic and spectroscopic studies on model peptides. Dalton Trans 2008, 5207–5219. 10.1039/b806192k
Google Scholar
Sandberg H, Almstedt A, Brandt J, Gray E, Holmquist L, Oswaldsson U, et al.: Structural and functional characteristics of the B-domain-deleted recombinant factor VIII protein, r-VIII SQ. Thromb Haemost 2001, 85: 93–100.
CAS
PubMed
Google Scholar
Pittman DD, Wang JH, Kaufman RJ: Identification and functional importance of tyrosine sulfate residues within recombinant factor VIII. Biochemistry 1992, 31: 3315–3325. 10.1021/bi00128a003
Article
CAS
PubMed
Google Scholar
Severs JC, Carnine M, Eguizabal H, Mock KK: Characterization of tyrosine sulfate residues in antihemophilic recombinant factor VIII by liquid chromatography electrospray ionization tandem mass spectrometry and amino acid analysis. Rapid Commun Mass Spectrom 1999, 13: 1016–1023. Publisher Full Text 10.1002/(SICI)1097-0231(19990615)13:11<1016::AID-RCM599>3.0.CO;2-5
Article
CAS
PubMed
Google Scholar
Michnick DA, Pittman DD, Wise RJ, Kaufman RJ: Identification of individual tyrosine sulfation sites within factor VIII required for optimal activity and efficient thrombin cleavage. J Biol Chem 1994, 269: 20095–20102.
CAS
PubMed
Google Scholar
Mumford AD, Laffan M, O'Donnell J, McVey JH, Johnson DJ, Manning RA, et al.: A Tyr346-->Cys substitution in the interdomain acidic region a1 of factor VIII in an individual with factor VIII:C assay discrepancy. Br J Haematol 2002, 118: 589–594. 10.1046/j.1365-2141.2002.03617.x
Article
CAS
PubMed
Google Scholar
Newell JL, Fay PJ: Cleavage at Arg-1689 influences heavy chain cleavages during thrombin-catalyzed activation of factor VIII. J Biol Chem 2009, 284: 11080–11089. 10.1074/jbc.M900234200
Article
PubMed Central
CAS
PubMed
Google Scholar
Fay PJ, Mastri M, Koszelak ME, Wakabayashi H: Cleavage of factor VIII heavy chain is required for the functional interaction of a2 subunit with factor IXA. J Biol Chem 2001, 276: 12434–12439. 10.1074/jbc.M009539200
Article
CAS
PubMed
Google Scholar
Fay PJ, Haidaris PJ, Smudzin TM: Human factor VIIIa subunit structure. Reconstruction of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunit. J Biol Chem 1991, 266: 8957–8962.
CAS
PubMed
Google Scholar
Lollar P, Parker ET: Structural basis for the decreased procoagulant activity of human factor VIII compared to the porcine homolog. J Biol Chem 1991, 266: 12481–12486.
CAS
PubMed
Google Scholar
Hubbard SJ, Thorpe DS:'NACCESS V2.1.1", Atomic Solvent Accessible Area Calculations. [http://www.bioinf.manchester.ac.uk/naccess/]
Wakabayashi H, Varfaj F, Deangelis J, Fay PJ: Generation of enhanced stability factor VIII variants by replacement of charged residues at the A2 domain interface. Blood 2008, 112: 2761–2769. 10.1182/blood-2008-02-142158
Article
PubMed Central
CAS
PubMed
Google Scholar
Eaton D, Rodriguez H, Vehar GA: Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry 1986, 25: 505–512. 10.1021/bi00350a035
Article
CAS
PubMed
Google Scholar
Parker ET, Pohl J, Blackburn MN, Lollar P: Subunit structure and function of porcine factor Xa-activated factor VIII. Biochemistry 1997, 36: 9365–9373. 10.1021/bi970599o
Article
CAS
PubMed
Google Scholar
Newell JL, Fay PJ: Proteolysis at Arg740 facilitates subsequent bond cleavages during thrombin-catalyzed activation of factor VIII. J Biol Chem 2007, 282: 25367–25375. 10.1074/jbc.M703433200
Article
CAS
PubMed
Google Scholar
Fay PJ, Mastri M, Koszelak ME, Wakabayashi H: Cleavage of factor VIII heavy chain is required for the functional interaction of a2 subunit with factor IXA. J Biol Chem 2001, 276: 12434–12439. 10.1074/jbc.M009539200
Article
CAS
PubMed
Google Scholar
Fay PJ, Beattie T, Huggins CF, Regan LM: Factor VIIIa A2 subunit residues 558–565 represent a factor IXa interactive site. J Biol Chem 1994, 269: 20522–20527.
CAS
PubMed
Google Scholar
Bajaj SP, Schmidt AE, Mathur A, Padmanabhan K, Zhong D, Mastri M, et al.: Factor IXa:factor VIIIa interaction. helix 330–338 of factor ixa interacts with residues 558–565 and spatially adjacent regions of the a2 subunit of factor VIIIa. J Biol Chem 2001, 276: 16302–16309. 10.1074/jbc.M011680200
Article
CAS
PubMed
Google Scholar
Fass DN, Knutson GJ, Katzmann JA: Monoclonal antibodies to porcine factor VIII coagulant and their use in the isolation of active coagulant protein. Blood 1982, 59: 594–600.
CAS
PubMed
Google Scholar
McMullen BA, Fujikawa K, Davie EW, Hedner U, Ezban M: Locations of disulfide bonds and free cysteines in the heavy and light chains of recombinant human factor VIII (antihemophilic factor A). Protein Sci 1995, 4: 740–746.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sudhakar K, Fay PJ: Effects of copper on the structure and function of factor VIII subunits: evidence for an auxiliary role for copper ions in cofactor activity. Biochemistry 1998, 37: 6874–6882. 10.1021/bi980084c
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Zhou Q, Nogami K, Ansong C, Varfaj F, Miles S, et al.: pH-dependent association of factor VIII chains: enhancement of affinity at physiological pH by Cu2 +. Biochim Biophys Acta 2006, 1764: 1094–1101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wakabayashi H, Schmidt KM, Fay PJ: Ca(2+) binding to both the heavy and light chains of factor VIII is required for cofactor activity. Biochemistry 2002, 41: 8485–8492. 10.1021/bi025589o
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Koszelak ME, Mastri M, Fay PJ: Metal ion-independent association of factor VIII subunits and the roles of calcium and copper ions for cofactor activity and inter-subunit affinity. Biochemistry 2001, 40: 10293–10300. 10.1021/bi010353q
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Schmidt KM, Fay PJ: Ca(2+) binding to both the heavy and light chains of factor VIII is required for cofactor activity. Biochemistry 2002, 41: 8485–8492. 10.1021/bi025589o
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Koszelak ME, Mastri M, Fay PJ: Metal ion-independent association of factor VIII subunits and the roles of calcium and copper ions for cofactor activity and inter-subunit affinity. Biochemistry 2001, 40: 10293–10300. 10.1021/bi010353q
Article
CAS
PubMed
Google Scholar
Fay PJ: Factor VIII structure and function. Int J Hematol 2006, 83: 103–108. 10.1532/IJH97.05113
Article
CAS
PubMed
Google Scholar
Donath MJ, de Laaf RT, Biessels PT, Lenting PJ, Loo JW, van Mourik JA, et al.: Characterization of des-(741–1668)-factor VIII, a single-chain factor VIII variant with a fusion site susceptible to proteolysis by thrombin and factor Xa. Biochem J 1995, 312(Pt 1):49–55.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fiser A, Sali A: Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 2003, 374: 461–491. full_text
Article
CAS
PubMed
Google Scholar
Sudhakar K, Fay PJ: Effects of copper on the structure and function of factor VIII subunits: evidence for an auxiliary role for copper ions in cofactor activity. Biochemistry 1998, 37: 6874–6882. 10.1021/bi980084c
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Zhou Q, Nogami K, Ansong C, Varfaj F, Miles S, et al.: pH-dependent association of factor VIII chains: enhancement of affinity at physiological pH by Cu2 +. Biochim Biophys Acta 2006, 1764: 1094–1101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wakabayashi H, Schmidt KM, Fay PJ: Ca(2+) binding to both the heavy and light chains of factor VIII is required for cofactor activity. Biochemistry 2002, 41: 8485–8492. 10.1021/bi025589o
Article
CAS
PubMed
Google Scholar
Wakabayashi H, Koszelak ME, Mastri M, Fay PJ: Metal ion-independent association of factor VIII subunits and the roles of calcium and copper ions for cofactor activity and inter-subunit affinity. Biochemistry 2001, 40: 10293–10300. 10.1021/bi010353q
Article
CAS
PubMed
Google Scholar
Fay PJ, Chavin SI, Malone JE, Schroeder D, Young FE, Marder VJ: The effect of carbohydrate depletion on procoagulant activity and in vivo survival of highly purified human factor VIII. Biochim Biophys Acta 1984, 800: 152–158.
Article
CAS
PubMed
Google Scholar
Pipe SW, Eickhorst AN, McKinley SH, Saenko EL, Kaufman RJ: Mild hemophilia A caused by increased rate of factor VIII A2 subunit dissociation: evidence for nonproteolytic inactivation of factor VIIIa in vivo. Blood 1999, 93: 176–183.
CAS
PubMed
Google Scholar
Pipe SW, Saenko EL, Eickhorst AN, Kemball-Cook G, Kaufman RJ: Hemophilia A mutations associated with 1-stage/2-stage activity discrepancy disrupt protein-protein interactions within the triplicated A domains of thrombin-activated factor VIIIa. Blood 2001, 97: 685–691. 10.1182/blood.V97.3.685
Article
CAS
PubMed
Google Scholar
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C: Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins-Structure Function and Bioinformatics 2006, 65: 712–725. 10.1002/prot.21123
Article
CAS
Google Scholar
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al.: A 2Nd Generation Force-Field for the Simulation of Proteins, Nucleic-Acids, and Organic-Molecules. Journal of the American Chemical Society 1995, 117: 5179–5197. 10.1021/ja00124a002
Article
CAS
Google Scholar
Comba P, Remenyi R: A new molecular mechanics force field for the oxidized form of blue copper proteins. J Comput Chem 2002, 23: 697–705. 10.1002/jcc.10084
Article
CAS
PubMed
Google Scholar
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG: A Smooth Particle Mesh Ewald Method. Journal of Chemical Physics 1995, 103: 8577–8593. 10.1063/1.470117
Article
CAS
Google Scholar
Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR: Molecular-Dynamics with Coupling to An External Bath. Journal of Chemical Physics 1984, 81: 3684–3690. 10.1063/1.448118
Article
CAS
Google Scholar