Coy JF, Dubel S, Kioschis P, Thomas K, Micklem G, Delius H, Poustka A. Molecular cloning of tissue-specific transcripts of a transketolase-related gene: implications for the evolution of new vertebrate genes. Genomics. 1996;32(3):309–16.
Article
CAS
Google Scholar
Lindqvist Y, Schneider G, Ermler U, Sundstrom M. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 a resolution. EMBO J. 1992;11(7):2373–9.
Article
CAS
Google Scholar
Zhao J, Zhong CJ. A review on research progress of transketolase. Neurosci Bull. 2009;25(2):94–9.
Article
Google Scholar
Butterworth RF, Gaudreau C, Vincelette J, Bourgault AM, Lamothe F, Nutini AM. Thiamine deficiency and Wernicke's encephalopathy in AIDS. Metab Brain Dis. 1991;6(4):207–12.
Article
CAS
Google Scholar
Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer's disease. Arch Neurol. 1988;45(8):836–40.
Article
CAS
Google Scholar
Coy JF, Dressler D, Wilde J, Schubert P. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab. 2005;51(5–6):257–73.
CAS
PubMed
Google Scholar
Rais B, Comin B, Puigjaner J, Brandes JL, Creppy E, Saboureau D, Ennamany R, Lee WN, Boros LG, Cascante M. Oxythiamine and dehydroepiandrosterone induce a G1 phase cycle arrest in Ehrlich's tumor cells through inhibition of the pentose cycle. FEBS Lett. 1999;456(1):113–8.
Article
CAS
Google Scholar
Jayachandran A, Lo PH, Chueh AC, Prithviraj P, Molania R, Davalos-Salas M, Anaka M, Walkiewicz M, Cebon J, Behren A. Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells. BMC Cancer. 2016;16:134.
Article
Google Scholar
Foldi M, Stickeler E, Bau L, Kretz O, Watermann D, Gitsch G, Kayser G, Zur Hausen A, Coy JF. Transketolase protein TKTL1 overexpression: a potential biomarker and therapeutic target in breast cancer. Oncol Rep. 2007;17(4):841–5.
PubMed
Google Scholar
Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, et al. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer. 2006;94(4):578–85.
Article
CAS
Google Scholar
Hu LH, Yang JH, Zhang DT, Zhang S, Wang L, Cai PC, Zheng JF, Huang JS. The TKTL1 gene influences total transketolase activity and cell proliferation in human colon cancer LoVo cells. Anti-Cancer Drugs. 2007;18(4):427–33.
Article
CAS
Google Scholar
Zhang M, Chai YD, Brumbaugh J, Liu X, Rabii R, Feng S, Misuno K, Messadi D, Hu S. Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes. BMC Cancer. 2014;14:223.
Article
CAS
Google Scholar
Mitschke L, Parthier C, Schroder-Tittmann K, Coy J, Ludtke S, Tittmann K. The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem. 2010;285(41):31559–70.
Article
CAS
Google Scholar
Meshalkina LE, Drutsa VL, Koroleva ON, Solovjeva ON, Kochetov GA. Is transketolase-like protein, TKTL1, transketolase? Biochim Biophys Acta. 2013;1832(3):387–90.
Article
CAS
Google Scholar
Maslova AO, Meshalkina LE, Kochetov GA. Computer modeling of transketolase-like protein, TKTL1, a marker of certain tumor tissues. Biochemistry (Mosc). 2012;77(3):296–9.
Article
CAS
Google Scholar
Nilsson U, Meshalkina L, Lindqvist Y, Schneider G. Examination of substrate binding in thiamin diphosphate-dependent transketolase by protein crystallography and site-directed mutagenesis. J Biol Chem. 1997;272(3):1864–9.
Article
CAS
Google Scholar
Ludtke S, Neumann P, Erixon KM, Leeper F, Kluger R, Ficner R, Tittmann K. Sub-angstrom-resolution crystallography reveals physical distortions that enhance reactivity of a covalent enzymatic intermediate. Nat Chem. 2013;5(9):762–7.
Article
Google Scholar
Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32(Web Server):W526–31.
Article
CAS
Google Scholar
Benkert P, Kunzli M, Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009;37(Web Server issue):W510–4.
Article
CAS
Google Scholar
Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 1):12–21.
Article
CAS
Google Scholar
Luthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356(6364):83–5.
Article
CAS
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.
Article
CAS
Google Scholar
Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE. Tools for integrated sequence-structure analysis with UCSF chimera. BMC Bioinformatics. 2006;7:339.
Article
Google Scholar
Mills JE, Dean PM. Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. J Comput Aided Mol Des. 1996;10(6):607–22.
Article
Google Scholar
Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C. T-coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 2011;39(Web Server issue):W13–7.
Article
Google Scholar
Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42(Web Server issue):W320–4.
Article
CAS
Google Scholar
Singleton CK, Wang JJ, Shan L, Martin PR. Conserved residues are functionally distinct within transketolases of different species. Biochemistry. 1996;35(49):15865–9.
Article
CAS
Google Scholar
Ranoux A, Hanefeld U. Improving Transketolase. Top Catalyst. 2013;56:750–64.
Article
CAS
Google Scholar
Lyskov S, Gray JJ. The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 2008;36(Web Server):W233–8.
Article
CAS
Google Scholar
Bykova IA, Solovjeva ON, Meshalkina LE, Kovina MV, Kochetov GA. One-substrate transketolase-catalyzed reaction. Biochem Biophys Res Commun. 2001;280(3):845–7.
Article
CAS
Google Scholar
Selivanov VA, Kovina MV, Kochevova NV, Meshalkina LE, Kochetov GA. Kinetic study of the H103A mutant yeast transketolase. FEBS Lett. 2004;567(2–3):270–4.
Article
CAS
Google Scholar
Diaz-Moralli S, Aguilar E, Marin S, Coy JF, Dewerchin M, Antoniewicz MR, Meca-Cortes O, Notebaert L, Ghesquiere B, Eelen G, et al. A key role for transketolase-like 1 in tumor metabolic reprogramming. Oncotarget. 2016.
Xu ZP, Wawrousek EF, Piatigorsky J. Transketolase haploinsufficiency reduces adipose tissue and female fertility in mice. Mol Cell Biol. 2002;22(17):6142–7.
Article
CAS
Google Scholar
Boyle L, Wamelink MM, Salomons GS, Roos B, Pop A, Dauber A, Hwa V, Andrew M, Douglas J, Feingold M, et al. Mutations in TKT are the cause of a syndrome including short stature, developmental delay, and congenital heart defects. Am J Hum Genet. 2016;98(6):1235–42.
Article
CAS
Google Scholar